
DataONE Python Products

unknown

2019-04-05

CONTENTS

1 Utilities (for end users) 3
1.1 DataONE ONEDrive . 3
1.2 DataONE Command Line Interface . 3

2 Member Node (for Member Node partners) 5
2.1 Generic Member Node (GMN) . 5

3 Python Libraries (for software developers) 7
3.1 DataONE Common Library for Python . 7
3.2 DataONE Client Library for Python . 7
3.3 DataONE Test Utilities . 7

4 Contents 9
4.1 DataONE ONEDrive . 9
4.2 DataONE Command Line Interface (CLI) . 37
4.3 Generic Member Node (GMN) . 55
4.4 Indices and tables . 110
4.5 DataONE Common Library for Python . 110
4.6 Indices and tables . 187
4.7 DataONE Client Library for Python . 187
4.8 Indices and tables . 221
4.9 DataONE Test Utilities . 221

Python Module Index 245

i

ii

DataONE Python Products

DataONE provides a number of products implemented in Python and Java, as part of the Investigator Toolkit (ITK).
Potential users of these products include software developers, Member Node partners and end users. Only the Python
products are outlined in this document.

For software developers, DataONE provides development libraries implemented in Python. These provide functional-
ity commonly needed by projects that interact with the DataONE infrastructure. It is recommended that applications
implemented in Python use the libraries instead of interacting directly with the infrastructure as this is likely to reduce
the development effort.

For Member Node partners, DataONE provides a Member Node (MN) implemented in Python, called Generic Member
Node (GMN).

Lastly, DataONE provides various tools intended for end users, also implemented in Python. These include ONEDrive
and the DataONE Command Line Client.

CONTENTS 1

DataONE Python Products

2 CONTENTS

CHAPTER

ONE

UTILITIES (FOR END USERS)

1.1 DataONE ONEDrive

DataONE ONEDrive enables DataONE objects stored in Zotero citation manager libraries to be accessed like regular
files on Windows, Mac OS X and Linux systems. This allows users to open remote DataONE objects locally and work
with them as if they reside on the user’s computer. For instance, a spread sheet that is stored on a Member Node can
be opened directly in Excel.

DataONE objects can be added to a Zotero library via the ONEMercury search tool. Objects can also be added in all
the other ways that Zotero supports. ONEDrive connects to a Zotero library and makes all DataONE objects within
the library accessible as regular files. Zotero collections are represented as folders in the ONEDrive filesystem.

1.2 DataONE Command Line Interface

The DataONE Command Line Interface (CLI) enables operations to be performed against the DataONE infrastructure
from the command line. Supported operations include creating and retrieving DataONE objects, searching, updating
access control rules and retrieving statistics.

3

https://www.zotero.org/

DataONE Python Products

4 Chapter 1. Utilities (for end users)

CHAPTER

TWO

MEMBER NODE (FOR MEMBER NODE PARTNERS)

2.1 Generic Member Node (GMN)

The Generic Member Node (GMN) is a DataONE Member Node MN). It provides an implementation of MN APIs and
can be used by organizations to expose their science data to DataONE if they do not wish to create their own, native
MN.

GMN can be used as a standalone MN or it can be used for exposing data that is already available on the web, to
DataONE. When used in this way, GMN provides a DataONE compatible interface to existing data and does not store
the data.

GMN can also be used as a workbone or reference for a 3rd party MN implementation. If an organization wishes to
donate storage space to DataONE, GMN can be set up as a replication target.

5

DataONE Python Products

6 Chapter 2. Member Node (for Member Node partners)

CHAPTER

THREE

PYTHON LIBRARIES (FOR SOFTWARE DEVELOPERS)

3.1 DataONE Common Library for Python

The DataONE Common Library for Python is a component of the DataONE Investigator Toolkit (ITK). It forms
the foundation on which higher level components in the DataONE Python stack are built. It provides functionality
commonly needed by clients, servers and other applications that interact with the DataONE infrastructure, including:

• Serializing, deserializing, validating and type conversions for the DataONE XML types

• Parsing and generating X.509 v3 certificates with DataONE extension

• Parsing and generating OAI-ORE Resource Maps as used by DataONE

• Utilities for working with XML documents, URLs, date-times, etc, in the context of DataONE

3.2 DataONE Client Library for Python

The DataONE Client Library for Python works together with the DataONE Common Library for Python to provide
functionality commonly needed by client software that connects to DataONE nodes.

The main functionality provided by this library is a complete set of wrappers for all DataONE API methods. There
are many details related to interacting with the DataONE API, such as creating MIME multipart messages, encoding
parameters into URLs and handling Unicode. The wrappers hide these details, allowing the developer to communicate
with nodes by calling native Python methods which take and return native Python objects.

The wrappers also convert any errors received from the nodes into native exceptions, enabling clients to use Python’s
concise exception handling system to handle errors.

3.3 DataONE Test Utilities

The DataONE Test Utilities package contains various utilities for testing DataONE infrastructure components and
clients. These include the Instance Generator, used for creating randomized System Metadata documents, and the
Stress Tester, used for stress testing of Member Node implementations. The stress_tester can create many concurrent
connections to a Member Node and simultaneously create any number of randomly generated objects while running
queries and object retrievals. There are also various Utilities.

7

DataONE Python Products

8 Chapter 3. Python Libraries (for software developers)

CHAPTER

FOUR

CONTENTS

4.1 DataONE ONEDrive

See DataONE Python Products for an overview of the DataONE libraries and other products implemented in Python.

DataONE ONEDrive enables DataONE objects stored in Zotero citation manager libraries to be accessed like regular
files on Windows, Mac OS X and Linux systems. This allows users to open remote DataONE objects locally and work
with them as if they reside on the user’s computer. For instance, a spread sheet that is stored on a Member Node can
be opened directly in Excel.

DataONE objects can be added to a Zotero library via the ONEMercury search tool. Objects can also be added in all
the other ways that Zotero supports. ONEDrive connects to a Zotero library and makes all DataONE objects within
the library accessible as regular files. Zotero collections are represented as folders in the ONEDrive filesystem.

Contents:

4.1.1 Installation

Microsoft Windows

1. Download the latest ONEDrive for Windows setup.

1. Start the setup and follow the prompts.

2. Start ONEDrive from the Windows Start menu.

3. See Using ONEDrive for notes on how to customize and access ONEDrive.

By default, ONEDrive uses the drive letter “O:”. If this drive letter is already in use, it can be changed in the
settings.py file.

Mac OS X

1. Install FUSE

Development of ONEDrive on OS X has been done using the Fuse for OS X distribution. Download the latest installer
(currently 2.5.4) and follow the instructions to install.

1. Install Python dependencies

fusepy provides the Python bindings to the FUSE library. To install fusepy, use the commands:

9

https://www.zotero.org/
https://repository.dataone.org/software/cicore/trunk/itk/d1_client_onedrive/src/onedrive-setup-2.0.0RC1.exe
http://osxfuse.github.com/
https://github.com/terencehonles/fusepy

DataONE Python Products

$ cd Downloads
$ git clone git://github.com/terencehonles/fusepy.git fusepy
$ cd fusepy
$ sudo python setup.py install

1. Install ONEDrive

There is currently no setup script for ONEDrive, so installation means simply downloading to a local folder:

$ cd ~/opt
$ svn co https://repository.dataone.org/software/cicore/trunk/itk/d1_client_onedrive
$ cd d1_client_onedrive

• Set PYTHONPATH to include d1_common_python/src and d1_libclient_python/src

• On OS X, set DYLD_LIBRARY_PATH=/usr/lib:$DYLD_LIBRARY_PATH

• Make sure option ‘user_allow_other’ is set in /etc/fuse.conf.

If the library search path is incomplete, an exception such as the following may occur:

OSError: dlopen(/opt/local/lib/libfuse.dylib, 6): Symbol not found: _iconv
Referenced from: /opt/local/lib/libfuse.dylib

To work around this, run onedrive.py with:

export DYLD_LIBRARY_PATH=/usr/lib:$DYLD_LIBRARY_PATH

Linux

Make sure the system is up to date:

sudo -H bash -c '
apt update --yes && apt dist-upgrade --yes

'

• Reboot if necessary.

Set up server packages:

• The build environment for DataONE Python extensions

• Commands used in the install

$ sudo apt install --yes build-essential python-dev libxml2-dev \
libxslt-dev

Install pip:

$ sudo apt install --yes python-pip; sudo pip install pip --upgrade;

Install ONEDrive, and its dependencies from PyPI, into a Python virtual environment. The virtual environment is set
up under onedrive_bin in the user’s home folder.

$ sudo pip install virtualenv;
$ cd; mkdir onedrive_bin; virtualenv --distribute onedrive_bin;
cd onedrive_bin; . bin/activate; pip install dataone.onedrive

• Press ctrl-d to exit the virtualenv.

10 Chapter 4. Contents

DataONE Python Products

ONEDrive expects to find a workspace.xml file in your home folder. Copy one of the example workspaces there:

$ cp onedrive_bin/workspace.xml ~

By default, ONEDrive uses a folder named “one” in your home folder as the mount point. Create it:

$ mkdir ~/one

Start ONEDrive:

$ ~/onedrive_bin/bin/onedrive

Open ~/one to access your DataONE objects.

4.1.2 Using ONEDrive

The default settings for ONEDrive are in the settings.py file that resides in the same location as the onedrive.
py script. To modify the default settings, edit settings.py.

To launch ONEDrive with the default settings, simply start ONEDrive. See the OS specific sections below for how to
start ONEDrive on your computer.

Most of the defaults can be overridden at launch time by adding options on the command line. The options are listed
below, together with their default values (from settings.py):

Usage: onedrive.py [options]

Options:
-h, --help show this help message and exit
-v, --version Display version information and exit
--disable-fuse-foreground
--directory-max-cache-items=10000
--macfuse-icon=/home/user/.dataone/d1.icon
--sci-obj-cache-path=/home/user/.dataone/onedrive/sci_obj
--attribute-max-cache-items=10000
--disable-fuse-nothreads
--resource-map-size=size
--max-solr-query-cache-size=1000
--region-tree-max-cache-items=1000
--disable-macfuse-local-disk
--disable-fuse-nonempty
--log-level=DEBUG
--object-tree-cache-path=/home/user/.dataone/onedrive/object_tree
--sys-meta-cache-path=/home/user/.dataone/onedrive/sys_meta
--region-tree-cache-path=/home/user/.dataone/onedrive/region_tree
--base-url=https://cn.dataone.org/cn
--max-objects-for-query=50
--sci-obj-max-cache-items=10000
--zotero-cache-path=/home/user/.dataone/onedrive/zotero_library
--folder-size-for-resource-maps=zero
--fuse-filesystem-name=ONEDrive
--disable-debug
--mountpoint=/home/user/one
--sys-meta-max-cache-items=10000
--disable-solr-debug
--log-file-path=/home/user/.dataone/onedrive/onedrive.log
--mount-drive-letter=O:

(continues on next page)

4.1. DataONE ONEDrive 11

DataONE Python Products

(continued from previous page)

--onedrive-cache-root=/home/user/.dataone/onedrive
--solr-query-path=/v1/query/solr/

Zotero Library Integration

ONEDrive uses the Zotero citation manager as an online repository of references to DataONE objects. As DataONE
objects are added to a Zotero library via the ONEMercury search tool or any other method supported by Zotero, they
become available as files in the ONEDrive filesystem. The files can then be opened directly in applications running on
your own computer.

ONEDrive shows up in your computer as an extra storage device, much like a CD drive or a USB flash drive. Like
your regular storage devices, ONEDrive contains folders that can contain files or other folders. The folders represent
collections in Zotero. To make DataONE objects appear in a given folder in ONEDrive, add them to the corresponding
collection in Zotero.

Folders can contain objects that have been specified directly and search queries that can specify any number of objects.
Search queries are dynamically resolved to their matching DataONE objects and those objects become available within
the ONEDrive filesystem, in the same folder in which the search query is stored.

ONEDrive recognizes DataONE objects in the Zotery library by their URLs. Zotero library items that have
URLs that reference the DataONE Coordinating Node resolve endpoint at https://cn.dataone.org/cn/v1/
resolve/<identifier> appear directly as DataONE objects. Library items that have URLs that reference the
query endpoint at https://cn.dataone.org/cn/v1/query/solr/<query> will cause the queries to be
executed on the Coordinating Node and the resulting DataONE objects will appear in the ONEDrive filesystem.

Notes

ONEDrive checks for updates in the Zotery library each time it is started. If the library has been updated, ONEDrive
will refresh its local cache of the Zotero library and the metadata for the DataONE objects exposed through the
filesystem.

Zotero can have multiple root level collections while a filesystem can have only one root. ONEDrive handles this by
adding an additional level, so that root level collections in Zotero are the first level directories in the filesystem root.

Items in the Zotero library don’t have to be in a collection. Any objects not in a collection are displayed in the root of
the filesystem.

The folders in the ONEDrive filesystem contain readme files that describe the contents of the folders.

Because the DataONE API currently does not specify a way for Member Nodes to allow partial downloads of objects,
ONEDrive downloads the entire object the first time it is accessed through the filesystem. If the object is large, the
filesystem will appear to freeze while this download is being performed in the background. When the entire object has
been downloaded to ONEDrive’s cache, the filesystem becomes responsive again. ONEDrive caches objects across
runs, so this will only happen the first time an object is accessed.

FlatSpace

In the root of the ONEDrive filesystem, there are two folders, FlatSpace and ObjectTree. ObjectTree exposes the
Zotero based functionality described above. FlatSpace exposes functionality that allows DataONE objects to be ac-
cessed without first having to add them to the Zotero library. To access objects directly through FlatSpace, simple type
the object identifier at the end of the filesystem path after entering the FlatSpace folder.

12 Chapter 4. Contents

https://www.zotero.org/

DataONE Python Products

After an object has been accessed through FlatSpace, ONEDrive will start rendering a folder for the object in FlatSpace
so that the identifier does not have to be typed the next time the object is accessed. ONEDrive caches this information
across runs.

4.1.3 Architecture

Linux / OSX

FUSE Driver

FUSE for Python

ONEDrive

Windows

Dokan Driver

Dokan for Python DataONE Client Library
(Python)

DataONE Common
(Python)

SolR Client
(Python) libzotero

Resolvers

The resolvers are classes that “resolve” filesystem paths to lists of files and folders for those paths. The resolvers are
arranged into a hierarchy. Each resolver examines the path and may resolve the path itself or pass control to another
resolver.

Resolvers deeper in the hierarchy corresponds to sections that are further to the right in the path. If a resolver passes
control to another resolver, it first removes the section of the left side of the path that it processed. Thus, each resolver
needs to know only how to parse the section of the path that it is designed to handle. This also enables the same
functionality to be exposed several places in the filesystem. For instance, the resolver for the object package level can
be reached though each of the root level search types.

If a resolver determines that the path that it has received is invalid, it can abort processing of the path by raising a
PathException.

4.1. DataONE ONEDrive 13

DataONE Python Products

The hierarchy of resolvers

Root

FlatSpace ObjectTree

Resource Map

Author Region Single Taxa Time Period

DataONE Object

• The resolvers are all derived from the Resolver class, not from each other.

• Each resolver has three public methods, get_attributes(), get_directory() and read_file().
get_attributes() returns the attributes for a file or folder. get_directory() returns the directory
contents for a folder. read_file() returns sections of a DataONE object.

• The Root resolver renders the root directory, which contains a set of directories designating different types of
interactions which can be performed with the DataONE infrastructure. It also parses the root elements of paths
and transfers control to the appropriate path resolver.

• All the resolvers handle paths as lists of path segments. The root resolver performs the conversion of the path
string to a list of path segments by splitting the path on the path separator and unescaping the segments. This
allows the path segments to contain DataONE identifiers that include the path separator and simplifies path

14 Chapter 4. Contents

DataONE Python Products

handling in the resolvers.

• ObjectTree ObjectTree renders a filesystem folder structure that corresponds with the hierarchy of collec-
tions in the Zotero library. It takes a source tree generator as input and that generator is currently the Zotero
client. This abstraction makes it easy to support additional online libraries, sky drives and reference managers
in the future.

• FlatSpace enables direct access to objects and enables users to share short ONEDrive paths to directly access
specific objects.

• Resource Map renders the contents of a OAI-ORE Resource Map.

• DataONE Object renders the folder view of a single DataONE object.

The Root resolver

As an example of the pattern that the resolvers follow, consider the Root resolver. The Root resolver is responsible for
rendering the root directory, /, and for dispatching paths out to the other resolvers. Only the root folder is handled by
the Root resolver.

get_attributes("/"): Return the attributes for / (0 size, directory).

get_attributes("/ObjectTree"): Not handled by the Root resolver. The Root resolver strips off /
ObjectTree, and passes the remaining path, / to the ObjectTree resolver. So, even though /ObjectTree is
returned by get_directory("/") (see below) of the Root resolver, that same path is not handled by the Root
resolver.

get_attributes("/ObjectTree/some/other/path"): Same as get_attributes("/
ObjectTree"), except that the path passed to the ObjectTree resolver is now /some/other/path.

get_attributes("/invalid"): This invalid path is handled by the Root resolver, which raises an InvalidPath
exception.

get_directory("/"): Return directories for all of the valid 1st level resolvers, such as ObjectTree.

get_directory("/ObjectTree"): Not handled by the Root resolver. As with the equivalent
get_attributes() call, the path is actually the root for the ObjectTree resolver.

get_directory("/ObjectTree/some/other/path"): Same as get_directory("/
ObjectTree"), except that the path passed to the ObjectTree is now /some/other/path.

Path representation

Only the driver specific part of ONEDrive handles paths as strings. The bulk of the code handles paths as lists of
path elements. The elements are strings or Unicode. They do not contain any escaped characters. The elements may
contain characters that have special meaning in the filesystem, such as the path separator character (“/” on *nix). If
so, these characters do NOT have the special meaning that they would have in a normal path string. When joining the
segments together to a path string, the special characters would be escaped.

Normally, when splitting the root path, “/”, one ends up with a list of two empty strings. The first empty string shows
that the path is absolute (starting at root), and the second that there is nothing after root. In ONEDrive, all paths
represented as lists of path segments are assumed to be rooted, so the first, empty, element is removed.

Callbacks

The FUSE callbacks and how these are handled.

4.1. DataONE ONEDrive 15

DataONE Python Products

getattr()

getattr() gets called on any path that the user attempts to access and any path that has previously been returned
by readdir(). getattr() returns information, such as size, date and type, for a single item. In ONEDrive, the
type of an item is either a file or a folder.

ONEDrive handles getattr() calls as follows:

1. The keys in the attribute cache are searched for a match to the path. If a match is found, the attributes for the file
or folder are returned.

2. If the path was not found in the cache, get_attributes() is called in the root resolver.

3. getattr() caches the result, then returns it.

readdir()

readdir() is only called for folders. It returns the names of items in a folder. It does not return any other informa-
tion, such as the type of the item. FUSE calls getattr() for each of the items returned by readdir() to get their
type, size and other information.

FUSE assumes that the root, “/”, is a folder, so getattr() is not called for the root before readdir() is called
on the root. This is the only exception to the general pattern of interactions between getattr() and readdir().

By calling getattr() and readdir() in a cyclic pattern, FUSE recursively discovers the folder tree in the filesys-
tem, the contents of the folders, and the sizes of both files and folders.

FUSE only calls readdir() on folders that were previously designated as folders and valid paths by getattr().

ONEDrive handles readdir() calls as follows:

1. The keys in the directory cache (see readdir()) are searched for a match to the path. If a match is found, the
names of the contents for the folder are returned.

2. readdir() caches the result in the directory cache and returns it to FUSE.

Debugging

When first mounting ONEDrive, the filesystem will be hit with various automated requests in order for the OS to
learn about the filesystem. This causes trouble when debugging. On Ubuntu, the automated requests can be disabled
temporarily by killing the gvfs processes:

$ sudo pkill -9 -f gvfs

Future improvements

There’s a lot more that can be done with Zotero integration if desired. For instance, ONEDrive could enable access to
other information that can be stored in Zotero libraries, such as tags, notes and attached objects.

ONEDrive could detect updates in Zotoro while it is running and dynamically update itself. Currently, ONEDrive only
refreshes its caches during startup.

16 Chapter 4. Contents

DataONE Python Products

4.1.4 ONEDrive Mockups

For reference, these alternatives were considered for how ONEDrive should be implemented.

The initial implementation of ONEDrive was a simple proof of concept that enabled access to objects on a specific
Member Node.

The second implementation was based on the standalone mockup below and allowed the user to perform searches
by manipulating the filesystem path. Instead of representing a folder hierarchy, the path was used for specifying a
faceted search. This system proved to be too complex to use. It also caused the filesystem to be virtually infinitely
recursive, which caused problems for file managers and filesystem searches.

The third implementation was based on the onemercury-integration and implemented the concept of a
DataONE Workspace.

The fourth implementation replaced the DataONE Workspace concept with the Zotero citation manager.

Contents:

Overview of mockups

In the mockups, filter operations and filter values are prefixed with “@” and “#” respectively. These decorators have
two purposes. The first is to cause filter operations, filter values and results from previously applied filters to be
displayed as separate groups in the filesystem when the files and folders are sorted alphabetically. The second is
to make it easier for ONEDrive to parse the path when the file and folder names are returned to ONEDrive as path
elements by the client. The filesystem path serves as the only channel of communication from the client to ONEDrive
and there is no opportunity to do interpretation or translation on the client. Without the decorations, ONEDrive would
have to keep track of more context to determine the semantics embedded in the path.

Member Node

Member Node filtering fits well in the filesystem. The mockup exposes it as a @MemberNode folder that appears
in all folders in which a new filter can be started. Opening the folder exposes a list of Member Nodes. Selecting
a Member Node applies the filter and brings the user back to a folder in which the resulting objects appear and the
@MemberNode filter is no longer available. We can also implement an “OR” filter by leaving the Member Node filter
available to be selected again.

Geographical Area

ONEMercury exposes the geographical area search in two ways, as names of continents/states/countries and as a
bounding box defined by latitude and longitude. The first type maps pretty well to the folder hierarchy and the mockup
exposes it as two hierarchies, one which allows the user to first select a continent then a state/country in that continent
and another that allows selecting a state/country directly. Letting the user select latitude and longitude floating point
numbers in a filesystem is tricky. It might involve having the user open one folder for each digit. Letting the user select
the coordinates as degrees, minutes and seconds is more feasible. We could expose a system which lets the user define
coordinates only to the granularity that they need. The user would first select the degrees for upper left and lower right
coordinates in a list of numbers between 0 and 359. Then, if they wish, they can refine that by selecting the minutes in
a list between 0 and 59, then the same for seconds. Also, only the numbers for which there are actually results within
the currently filtered objects are displayed. The mockup illustrates these idea.

4.1. DataONE ONEDrive 17

DataONE Python Products

Keyword

The only way to let the user type a keyword in filesystem based search/discovery would be to have them type it directly
into the path, which I don’t think is feasible. So the mockup shows a system where the user must know up front which
keyword he wants. The idea is to have the user click through a hierarchy of groups until there are few enough keywords
that they can be displayed directly in a list. The groups are displayed as folders named after the first and last keyword
in the group. If the keyword filter is the first one that the user applies, my guess is that it will normally be 2-3 levels
deep. If the keyword filter is applied after other filters, it may be just 0 or 1 levels deep (where 0 levels means that the
keywords are displayed directly, without having to select groups first).

Date-time filtering

Date-time filtering is implemented in a way similar to the bounding box geographical area filtering. The goal is have
the user filter only to the granularity that they need and select only from date-times for which there are existing objects.
So a user that is searching for data up to and including 2005 can select @EndYear/#2005, but does not have to refine
with month and day selections and if the current set of objects contain data only up to January and February 2005,
only those months are displayed, with the same for year and day (Solr faceting is used for retrieving the options in a
single query). The mockup illustrates this and shows how to make the user aware that refinements are available but
optional. This is done by displaying the currently filtered list of objects plus other options for filtering together with
each optional date-time refinement step.

As both start and end date-time filtering is available and objects can contain data for a period of time, I think that
filtering should be applied in such a way that objects that contain data for a time period that has any overlap with
the specified start and end date-time filter should be included in the filter. So, for instance, an object with data for
2005-2007 would be included in a search for objects for 2000-2005. And objects with data for 2000-2010 would be
included in a search for objects for 2005.

From an implementation standpoint, the mockup also shows how ONEDrive can parse the path in such a way that an
optional elements in the path are seen in the context of earlier elements.

Data package

The data package mockup aims to show the following:

• When a data package folder is opened, the entire contents of the package can be exposed as a bagit or zip file.
- The same object can be exposed in multipe formats. For instance, an EML file may also be exposed as an
HTML file. - The system metadata for all the objects is in a separate folder in order to keep the main folder from
getting too crowded.

Transformations can be implemented as CN services or can be implemented directly in ONEDrive, maybe as a plugin
system.

OS specific integration

As an extension of the standard filesystem, ONEDrive is by nature a platform specific user interface. Here are several
user interface mockups that take advantage of the user interface approach on each platform on which we plan to
operate.

Mac OS X

Mac OS X displays files using the Finder. The standard Finder view would be used to display a set of browse hier-
archies representing the authors, locations, time periods, taxa, etc. associated with the data sets. At the leaves of this

18 Chapter 4. Contents

DataONE Python Products

folder hierarchy are Data Packages, each of which is represented as a folder containing the science metadata for the
package in an HTML file and each of the data files in their natural format, and with an appropriate filename (e.g., with
proper extension).

Basic folder view

The basic folder view shows only browse hierarchies that are sensible from a user perspective. These will need to be
controlled hierarchies that are cleaned up from our metadata indexing corpus. The ONEDrive mount point is shown
in the Finder window on the left.

Get Info Dialog used to display System Metadata

Package and file-oriented metadata that comes from the DataONE SystemMetadata corpus would be added as extended
attributes to the file and folders, so that the standard Get Info dialog box can show these metadata fields. Note the
presence of the DOI identifier listed in the middle.

Filtering approach 1: Spotlight

In our first UI for filtering, we use the built-in Mac OS X Spotlight filtering system that provides an UI for specifying
search filters and applies them to the extended attributes of the items.

Filtering approach 2: Filter Dialog

Many users are unaware of the Spotlight filter UI described above, and don’t naturally find it in the Finder interface.
A potential alternative is to provide our own Filter Dialog that is accessed via a ONEDrive dropdown menu. The
following two screenshots show first the dropdown menu and then a mockup of a potential filtering dialog box.

The use of a filtering dialog box gives us a lot of flexibility in layoing out filter widgets, including the capability to
use map widgets and other UI widgets to make constructing filters powerful. Once a filter is applied, the view in the
ONEDrive window is constrained to display only packages that match the filter criteria.

ONEMercury Integration

Search/discovery for ONEDrive can be exposed in a web interface based on ONEMercury. The interface would let
users search for and discover objects. After finding the objects, they would be accessed through ONEDrive.

ONEMercury

Opening objects

• Single objects in the search results can be opened directly with the local application to which the given filetype
is associated.

4.1. DataONE ONEDrive 19

DataONE Python Products

Fig. 1: Figure 1. Mac OS X Mockup of the hierarchical folder view.

20 Chapter 4. Contents

DataONE Python Products

Fig. 2: Figure 2. Mac OS X Get Info dialog is used to display system metadata.

4.1. DataONE ONEDrive 21

DataONE Python Products

Fig. 3: Figure 3. Mac OS X Mockup of the filter UI showing a restricted set of data packages.

22 Chapter 4. Contents

DataONE Python Products

Fig. 4: Figure 1. Mac OS X Mockup showing the ONEDrive dropdown menu.

4.1. DataONE ONEDrive 23

DataONE Python Products

Fig. 5: Figure 1. Mac OS X Mockup showing the filter dialog for constraining what is shown in the window.

24 Chapter 4. Contents

DataONE Python Products

Fig. 6: Figure 1. Regular search/discovery in ONEMercury

4.1. DataONE ONEDrive 25

DataONE Python Products

Fig. 7: Figure 2. Opening a single object

26 Chapter 4. Contents

DataONE Python Products

Saving objects

• A single object can be added to user defined folders.

• The user can use the “New folder” option to a new folder and add the first object to it in the same operation.

Fig. 8: Figure 3. Saving a single object

• All of the search results can be added to a folder.

• It is also possible to add a function to create an RSS or Atom feed for the search results so that the user can be
notified when new objects that match the search parameters are added to DataONE.

• The folders created in ONEMercury and the search results stored in them become visible in ONEDrive.

4.1. DataONE ONEDrive 27

DataONE Python Products

Fig. 9: Figure 4. Adding search results to folder

Fig. 10: Figure 5. ONEDrive view of files and folders

28 Chapter 4. Contents

DataONE Python Products

Standalone

In this approach, search and discovery is exposed directly as a filesystem hierarchy within ONEDrive. This is done
by changing the semantics of files and folders. Instead of folders being containers of files, they are used as filters and
filter parameters. The files become DataONE objects that match the currently applied filters.

Main advantages:

• Search and discovery functionality is in the same place as object access.

• Virtually the same code base can be used for all supported platforms.

Main disadvantages:

• Giving folders different semantics than they have in a regular filesystem is unintuitive.

• There is a learning curve in interpreting and navigating the search/discovery filesystem.

• Input data such as keywords cannot be typed in – they can only be selected.

Mockups

In the mockups, filter operations and filter values are prefixed with “@” and “#” respectively. These decorators have
two purposes. The first is to cause filter operations, filter values and results from previously applied filters to be
displayed as separate groups in the filesystem when the files and folders are sorted alphabetically. The second is
to make it easier for ONEDrive to parse the path when the file and folder names are returned to ONEDrive as path
elements by the client. The filesystem path serves as the only channel of communication from the client to ONEDrive
and there is no opportunity to do interpretation or translation on the client. Without the decorations, ONEDrive would
have to keep track of more context to determine the semantics embedded in the path.

Member Node

Member Node filtering fits well in the filesystem. The mockup exposes it as a @MemberNode folder that appears
in all folders in which a new filter can be started. Opening the folder exposes a list of Member Nodes. Selecting
a Member Node applies the filter and brings the user back to a folder in which the resulting objects appear and the
@MemberNode filter is no longer available. We can also implement an “OR” filter by leaving the Member Node filter
available to be selected again.

Geographical Area

ONEMercury exposes the geographical area search in two ways, as names of continents/states/countries and as a
bounding box defined by latitude and longitude. The first type maps pretty well to the folder hierarchy and the mockup
exposes it as two hierarchies, one which allows the user to first select a continent then a state/country in that continent
and another that allows selecting a state/country directly. Letting the user select latitude and longitude floating point
numbers in a filesystem is tricky. It might involve having the user open one folder for each digit. Letting the user select
the coordinates as degrees, minutes and seconds is more feasible. We could expose a system which lets the user define
coordinates only to the granularity that they need. The user would first select the degrees for upper left and lower right
coordinates in a list of numbers between 0 and 359. Then, if they wish, they can refine that by selecting the minutes in
a list between 0 and 59, then the same for seconds. Also, only the numbers for which there are actually results within
the currently filtered objects are displayed. The mockup illustrates these idea.

4.1. DataONE ONEDrive 29

DataONE Python Products

Keyword

The only way to let the user type a keyword in filesystem based search/discovery would be to have them type it directly
into the path, which I don’t think is feasible. So the mockup shows a system where the user must know up front which
keyword he wants. The idea is to have the user click through a hierarchy of groups until there are few enough keywords
that they can be displayed directly in a list. The groups are displayed as folders named after the first and last keyword
in the group. If the keyword filter is the first one that the user applies, my guess is that it will normally be 2-3 levels
deep. If the keyword filter is applied after other filters, it may be just 0 or 1 levels deep (where 0 levels means that the
keywords are displayed directly, without having to select groups first).

Date-time filtering

Date-time filtering is implemented in a way similar to the bounding box geographical area filtering. The goal is have
the user filter only to the granularity that they need and select only from date-times for which there are existing objects.
So a user that is searching for data up to and including 2005 can select @EndYear/#2005, but does not have to refine
with month and day selections and if the current set of objects contain data only up to January and February 2005,
only those months are displayed, with the same for year and day (Solr faceting is used for retrieving the options in a
single query). The mockup illustrates this and shows how to make the user aware that refinements are available but
optional. This is done by displaying the currently filtered list of objects plus other options for filtering together with
each optional date-time refinement step.

As both start and end date-time filtering is available and objects can contain data for a period of time, I think that
filtering should be applied in such a way that objects that contain data for a time period that has any overlap with the
specified start and end date-time filter should be included in the filter. So, an object with data for 2005-2007 would be
included in a search for objects for 2000-2005. And an object with data for 2000-2010 would be included in a search
for objects for 2005.

From an implementation standpoint, the mockup also shows how ONEDrive can parse the path in such a way that an
optional elements in the path are seen in the context of earlier elements.

4.1.5 Creating the installer for Windows

ONEDrive supports Microsoft Windows. The Windows distribution installs ONEDrive as a regular application, inde-
pendent of any existing Python environment on the computer. These instructions detail how to create the installer and
is intended as a reference for DataONE and 3rd party developers.

The regular distribution channel for DataONE’s Python products is PyPI, but the PyPI distribution does not include
various files needed for building the installer.

To create the ONEDrive installer for Windows, ONEDrive is first installed from the DataONE Subversion repository
into a regular Python environment.

Then, a stand-alone, executable version of ONEDrive is created with py2exe.

Finally, an installer is built for the executable and all dependencies.

1. If you do not already have a working 32-bit Python 3.6 environment, download the latest 32-bit Python 3.6
Windows installer from http://www.python.org/download/ and install it.

Open a command prompt:

> setx path "%path%;C:\Python27;C:\Python27\Scripts"

Close then reopen the command prompt (to activate the new path).

1. Install pip:

30 Chapter 4. Contents

http://www.python.org/download/

DataONE Python Products

Download get-pip.py:

https://pip.pypa.io/en/latest/installing.html

Go to the download location of get-pip.py.

E.g.:

> cd \Users\Myself\Downloads

Install and update pip:

> python get-pip.py
> python -m pip install -U pip

1. Open a Command Prompt.

2. Install the DataONE Client Library for Python and dependencies:

> pip install dataone.libclient

1. Download and install Subversion for Windows from http://sourceforge.net/projects/win32svn/

2. Download and install the 32-bit Python 3.6 py2exe from http://sourceforge.net/projects/py2exe/files/py2exe/

3. Open a new Command Prompt (to pick up new path to the svn command).

4. Create a work area on disk. Below, C:\onedrive is used for this. To use another folder replace all the
references to the folder below.

> mkdir c:\onedrive
> c:
> cd \onedrive
> svn co https://repository.dataone.org/software/cicore/trunk/itk/d1_client_onedrive/
→˓src/ .

1. Start ONEDrive and verify that it works:

> src\d1_client_onedrive\onedrive.py

Access the ONEDrive filesystem and check that the folder hierarchy can be traversed and that the DataONE objects
can be accessed.

Exit with ctrl-break.

1. Build a stand-alone version of ONEDrive:

> cd src
> setup.py py2exe

A list of missing modules will be printed. These are not used by ONEDrive.

1. Verify that the exe version of ONEDrive works:

> cd dist
> onedrive.exe

Access the ONEDrive filesystem and check that the folder hierarchy can be traversed and that the DataONE objects
can be accessed.

Exit with ctrl-break.

4.1. DataONE ONEDrive 31

http://sourceforge.net/projects/win32svn/
http://sourceforge.net/projects/py2exe/files/py2exe/

DataONE Python Products

1. Download and install the stable release of Inno Setup from: http://www.jrsoftware.org/isdl.php#stable

Open the Inno Setup script:

> cd \onedrive
> onedrive-setup.iss

In the script, update the version number so that it matches the version number displayed when ONEDrive was started
in a previous step.

Build the installer by selecting Compile and Build in the main menu.

The finished installer will be in C:\onedrive\src\Output.

4.1.6 Glossary

DataONE Terms

DataONE Data Observation Network for Earth

https://dataone.org

DataONE Common Library for Python Part of the DataONE Investigator Toolkit (ITK). Provides functionality
commonly needed by projects that interact with the DataONE infrastructure via Python. It is a dependency
of DataONE Client Library for Python, GMN and currently all other DataONE components written in Python.

DataONE Client Library for Python Part of the DataONE Investigator Toolkit (ITK). Provides programmatic ac-
cess to the DataONE infrastructure and may be used to form the basis of larger applications or to extend existing
applications to utilize the services of DataONE.

DataONE Test Utilities for Python A framework for testing and validation of DataONE components implemented
in Python.

GMN DataONE Generic Member Node.

A DataONE Member Node MN). It provides an implementation of MN APIs and can be used by organizations
to expose their science data to DataONE if they do not wish to reate their own, native MN.

Metacat Metacat is a flexible, open source metadata catalog and data repository that targets scientific data, particularly
from ecology and environmental science. Metacat accepts XML as a common syntax for representing the large
number of metadata content standards that are relevant to ecology and other sciences. Thus, Metacat is a generic
XML database that allows storage, query, and retrieval of arbitrary XML documents without prior knowledge
of the XML schema.

Metacat provides a complete implementation of all MN APIs.

http://www.dataone.org/software-tools/metacat

Replication target A MN that accepts replicas (copies) of science data from other MNs and thereby helps ensuring
that science data remains available.

Vendor specific extensions Functionality that is not part of the DataONE APIs but is supported by a DataONE com-
ponent. Vendor specific extensions are activated by adding custom HTTP headers when calling the existing
DataONE API methods. When activated, they modify the behavior of the method in a vendor specific way.
DataONE has reserved the namespace starting with VENDOR_ for such custom headers.

Investigator Toolkit (ITK) The Investigator Toolkit provides a suite of software tools that are useful for the various
audiences that DataONE serves. The tools fall in a number of categories, which are further developed here,
with examples of potential applications that would fit into each category. https://releases.dataone.org/online/
api-documentation-v2.0.1/design/itk-overview.html

32 Chapter 4. Contents

http://www.jrsoftware.org/isdl.php#stable
https://dataone.org
http://www.dataone.org/software-tools/metacat
https://releases.dataone.org/online/api-documentation-v2.0.1/design/itk-overview.html
https://releases.dataone.org/online/api-documentation-v2.0.1/design/itk-overview.html

DataONE Python Products

MN DataONE Member Node.

CN DataONE Coordinating Node.

Node DataONE Member Node or Coordinating Node

client An application that accesses the DataONE infrastructure on behalf of a user.

Science Data An object (file) that contains scienctific observational data.

Science Metadata An object (file) that contains information about a Science Data object.

System Metadata An object (file) that contains system level information about a Science Data or a Science Metadata
object.

PID Persistent Identifier. An identifier that is unique within DataONE and references an immutable object.

SID Series Identifier. An identifier that is unique within DataONE and references one or more objects that have been
linked together by a series of updates.

Workspace The Workspace is an online storage area where users can store search filters and references to DataONE
objects. It follows the files and folders metaphor of regular filesystems. Objects are added to the Workspace
from the ONEMercury search engine.

Authentication and security

X.509 An ITU-T standard for a public key infrastructure (PKI) for single sign-on (SSO) and Privilege Management
Infrastructure (PMI). X.509 specifies, amongst other things, standard formats for public key certificates, certifi-
cate revocation lists, attribute certificates, and a certification path validation algorithm.

http://en.wikipedia.org/wiki/X509

CA Certificate Authority

A certificate authority is an entity that issues digital certificate s. The digital certificate certifies the ownership of
a public key by the named subject of the certificate. This allows others (relying parties) to rely upon signatures
or assertions made by the private key that corresponds to the public key that is certified. In this model of trust
relationships, a CA is a trusted third party that is trusted by both the subject (owner) of the certificate and the
party relying upon the certificate. CAs are characteristic of many public key infrastructure (PKI) schemes.

http://en.wikipedia.org/wiki/Certificate_authority

CA signing key The private key which the CA uses for signing CSRs.

Server key The private key that Apache will use for proving that it is the owner of the certificate that it provides to
the client during the SSL handshake.

CSR Certificate Signing Request

A message sent from an applicant to a CA in order to apply for a certificate.

http://en.wikipedia.org/wiki/Certificate_signing_request

Certificate A public key certificate (also known as a digital certificate or identity certificate) is an electronic document
which uses a digital signature to bind a public key with an identity – information such as the name of a person
or an organization, their address, and so forth. The certificate can be used to verify that a public key belongs to
an individual.

http://en.wikipedia.org/wiki/Public_key_certificate

CA certificate A certificate that belongs to a CA and serves as the root certificate in a term:chain of trust.

4.1. DataONE ONEDrive 33

http://en.wikipedia.org/wiki/X509
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_signing_request
http://en.wikipedia.org/wiki/Public_key_certificate

DataONE Python Products

Self signed certificate A certificate that is signed by its own creator. A self signed certificate is not a part of a chain
of trust and so, it is not possible to validate the information stored in the certificate. Because of this, self signed
certificates are useful mostly for testing in an implicitly trusted environment.

http://en.wikipedia.org/wiki/Self-signed_certificate

Chain of trust The Chain of Trust of a Certificate Chain is an ordered list of certificates, containing an end-user
subscriber certificate and intermediate certificates (that represents the Intermediate CA), that enables the receiver
to verify that the sender and all intermediates certificates are trustworthy.

http://en.wikipedia.org/wiki/Chain_of_trust

DN Distinguished Name.

OpenSSL Toolkit implementing the SSL v2/v3 and TLS v1 protocols as well as a full-strength general purpose cryp-
tography library.

SSL Secure Sockets Layer

A protocol for transmitting private information via the Internet. SSL uses a cryptographic system that uses two
keys to encrypt data a public key known to everyone and a private or secret key known only to the recipient of
the message.

SSL handshake The initial negotiation between two machines that communicate over SSL.

http://developer.connectopensource.org/display/CONNECTWIKI/SSL+Handshake

http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_
authentication_with_certificates.png

TLS Transport Layer Security

Successor of SSL.

Client side authentication SSL Client side authentication is part of the SSL handshake, where the client proves its
identity to the web server by providing a certificate to the server. The certificate provided by the client must be
signed by a CA that is trusted by the server. Client Side Authentication is not a required part of the handshake.
The server can be set up to not allow Client side authentication, to require it or to let it be optional.

Server Side Authentication SSL Server Side Authentication is part of the SSL handshake, where the server proves
its identity to the client by providing a certificate to the client. The certificate provided by the server must be
signed by a CA that is trusted by the client. Server Side Authentication is a required part of the handshake.

Client side certificate Certificate that is provided by the client during client side authentication.

Server side certificate Certificate that is provided by the server during server side authentication.

Identity Provider A service that creates, maintains, and manages identity information for principals while providing
authentication services to relying party applications within a federation or distributed network.

4.1.7 ONEDrive

FUSE Filesystem in Userspace.

http://fuse.sourceforge.net/

macfuse http://code.google.com/p/macfuse/

fusepy http://code.google.com/p/fusepy/

Dokan User mode file system for windows.

http://dokan-dev.net/en/

34 Chapter 4. Contents

http://en.wikipedia.org/wiki/Self-signed_certificate
http://en.wikipedia.org/wiki/Chain_of_trust
http://developer.connectopensource.org/display/CONNECTWIKI/SSL+Handshake
http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_authentication_with_certificates.png
http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_authentication_with_certificates.png
http://fuse.sourceforge.net/
http://code.google.com/p/macfuse/
http://code.google.com/p/fusepy/
http://dokan-dev.net/en/

DataONE Python Products

Misc

Subversion Version control system

http://subversion.apache.org/

Bash GNU Bourne-Again Shell

http://www.gnu.org/software/bash/

Apache HTTP server

http://httpd.apache.org/

MPM Multi-Processing Module

The component within Apache that manages the processes and threads used for serving requests.

http://httpd.apache.org/docs/2.0/mpm.html

Python A dynamic programming language.

http://www.python.org

Django High-level Python Web framework that encourages rapid development and clean, pragmatic design.

https://www.djangoproject.com/

WSGI Web Server Gateway Interface

http://www.wsgi.org/wsgi/

mod_wsgi An Apache module that implements WSGI.

mod_ssl An Apache module that interfaces to OpenSSL.

PyXB Python XML Schema Bindings

http://pyxb.sourceforge.net/

minixsv A Lightweight XML schema validator

http://www.familieleuthe.de/MiniXsv.html

python-dateutil Extends the standard datetime module

http://labix.org/python-dateutil

PostgreSQL A freely available object-relational database management system (ORDBMS).

http://www.postgresql.org/

MySQL A freely available object-relational database management system (ORDBMS).

http://www.mysql.com/

SQLite3 A freely available object-relational database management system (ORDBMS).

http://www.sqlite.org/

Oracle A object-relational database management system (ORDBMS) that is available in both free and commercial
versions.

http://www.oracle.com/

Psycopg2 Psycopg is a PostgreSQL database adapter for Python.

http://initd.org/psycopg/

4.1. DataONE ONEDrive 35

http://subversion.apache.org/
http://www.gnu.org/software/bash/
http://httpd.apache.org/
http://httpd.apache.org/docs/2.0/mpm.html
http://www.python.org
https://www.djangoproject.com/
http://www.wsgi.org/wsgi/
http://pyxb.sourceforge.net/
http://www.familieleuthe.de/MiniXsv.html
http://labix.org/python-dateutil
http://www.postgresql.org/
http://www.mysql.com/
http://www.sqlite.org/
http://www.oracle.com/
http://initd.org/psycopg/

DataONE Python Products

OpenSSL An open source implementation of the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security
(TLS v1) protocols as well as a full-strength general purpose cryptography library.

http://www.openssl.org/

cron cron is a time-based job scheduler in Unix-like computer operating systems. cron enables users to schedule jobs
(commands or shell scripts) to run periodically at certain times or dates.

python-setuptools A package manager for Python

http://pypi.python.org/pypi/setuptools

ISO8601 International standard covering the exchange of date and time-related data

http://en.wikipedia.org/wiki/ISO_8601

python-iso8601 Python library implementing basic support for ISO8601

http://pypi.python.org/pypi/iso8601/

CILogon The CILogon project facilitates secure access to CyberInfrastructure (CI).

http://www.cilogon.org/

LOA Levels of Assurance

CILogon operates three Certification Authorities (CAs) with consistent operational and technical security con-
trols. The CAs differ only in their procedures for subscriber authentication, identity validation, and naming.
These differing procedures result in different Levels of Assurance (LOA) regarding the strength of the identity
contained in the certificate. For this reason, relying parties may decide to accept certificates from only a subset
of the CILogon CAs.

http://ca.cilogon.org/loa

REST Representational State Transfer

A style of software architecture for distributed hypermedia systems such as the World Wide Web.

http://en.wikipedia.org/wiki/Representational_State_Transfer

SolR Apache Solr

Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its
major features include powerful full-text search, hit highlighting, faceted search, dynamic clustering, database
integration, rich document (e.g., Word, PDF) handling, and geospatial search. Solr is highly scalable, providing
distributed search and index replication, and it powers the search and navigation features of many of the world’s
largest internet sites.

http://lucene.apache.org/solr/

OAI-ORE Resource Map Open Archives Initiative Object Reuse and Exchange (OAI-ORE) defines standards for
the description and exchange of aggregations of Web resources.

http://www.openarchives.org/ore/1.0/

4.1.8 Indices and tables

• genindex

• modindex

• search

36 Chapter 4. Contents

http://www.openssl.org/
http://pypi.python.org/pypi/setuptools
http://en.wikipedia.org/wiki/ISO_8601
http://pypi.python.org/pypi/iso8601/
http://www.cilogon.org/
http://ca.cilogon.org/loa
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://lucene.apache.org/solr/
http://www.openarchives.org/ore/1.0/

DataONE Python Products

4.2 DataONE Command Line Interface (CLI)

See DataONE Python Products for an overview of the DataONE libraries and other products implemented in Python.

The DataONE Command Line Interface (CLI) enables operations to be performed against the DataONE infrastructure
from the command line. Supported operations include creating and retrieving DataONE objects, searching, updating
access control rules and retrieving statistics.

Contents:

4.2.1 Installing the DataONE CLI

The DataONE Command Line Interface (CLI) enables operations to be performed against the DataONE infrastructure
from the command line. Supported operations include creating and retrieving DataONE objects, searching, updating
access control rules and retrieving statistics.

Install

The CLI is distributed via PyPI, the Python Package Index.

Set up OS packages required by some of the CLI’s PyPI distributed dependencies. This includes a build environment
for DataONE Python extensions.

$ sudo apt install --yes build-essential python-dev libssl-dev \
libxml2-dev libxslt-dev openssl curl

Install pip:

$ sudo apt install --yes python-pip; sudo pip install pip --upgrade

Install the CLI from PyPI:

$ sudo pip install dataone.cli

4.2.2 Examples

Note: Use the Arrow Up and Arrow Down keys to find commands in the command history. These can then be edited
and run again.

Viewing and manipulating the session variables

Viewing and manipulating the session variables used when performing operations against the DataONE infrastructure
via the DataONE Command Line Interface (CLI).

If desired, the session variables can be reset back to their defaults (useful if they were modified by an existing .
dataone_cli.conf file at startup):

> reset

Set the authentication session variables for authenticated access using a certificate from CILogon (downloaded to the
default location in /tmp):

4.2. DataONE Command Line Interface (CLI) 37

DataONE Python Products

> set anonymous false
> set cert-file none
> set key-file none

Or set to use a certificate in a non-standard location:

> set cert-file /etc/dataone/client/certs/myclientcert.pem

View all the session variables:

> set

Save the session variables to a file for later use:

> save ~/d1/mysettings

Exit the CLI:

> exit

Searching for Science Data

A scientist can discover and download Science Data to leverage them in their own research.

Load the session variables from the file created in the previous step:

> load ~/d1/mysettings

View the session variables:

> set

Perform an unlimited search:

> set query *:*
> search

Restrict the search to a specific time or later:

> set from-date 1998-01-01T05:00:00
> search

Modify the search parameters to find only Science Data that originated from the “DEMO3” MN and search:

> set query origin_mn:DEMO3
> search

The search terms can also be specified after the “search” command:

> search barnacle

Modify the search parameters to find only Science Data that are of type text/csv and search again:

> set format-id text/csv
> search barnacle

38 Chapter 4. Contents

DataONE Python Products

Downloading Science Data Objects

View the session variables:

> set

Set MN from which to download the Science Data Object:

> set mn-url https://dataone.member.node.com/mn/

Download Science Data Object and save to local file:

> get hdl:10255/dryad.669/mets.xml ~/my_dataone_files/dryad669.xml

Downloading System Metadata

System Metadata is an XML document that contains additional information about a Science Data Object.

Retrieve the System Metadata and display it:

> meta hdl:10255/dryad.669/mets.xml

Retrieve the System Metadata and save it to a file:

> meta hdl:10255/dryad.669/mets.xml ~/d1/dryad669_system_metadata.xml

Downloading an access restricted object

• Authenticate with CILogon, at https://cilogon.org/?skin=DataONE

Tell the CLI that you wish to use authentication:

> set anonymous False

• Download an object for which you have read access:

> get my-access-controlled-identifier

See Authentication for more information.

Uploading Science Data Objects

A scientist can upload a set of Science Data to benefit from the services provided by DataONE.

Select MN to which to upload the Science Data Object:

> set mn-url https://dataone.member.node.com/mn/

Configure the session variables used when generating System Metadata:

> set rights-holder CN=MATTJTEMP,DC=dataone,DC=org
> set origin-mn DEMO1
> set authoritative-mn DEMO1

Create an Access Policy that has only public read permisisons:

4.2. DataONE Command Line Interface (CLI) 39

https://cilogon.org/?skin=DataONE

DataONE Python Products

> clearaccess
> allowaccess public read

Add a create (upload) operation of the Science Data Object to the write operation queue:

> create mynewpid ~/path/to/my/file

View the queue:

> queue

Edit the queue if there are any mistakes in the create operation:

> edit

Perform all operations in the queue:

> run

Store the settings in .dataone_cli.conf for use when creating similar Science Data Objects later:

> save

Exit the CLI:

> exit

Misc operations

Find replicas of Science Data Objects:

> resolve hdl:10255/dryad.669/mets.xml

Display list of Science Data Objects on a MN or CN:

> set mn-url https://mn.dataone.org/mn
> set start 100
> set count 10
> list

Display event log on a MN:

> reset
> set anonymous false
> set cert-file /etc/dataone/client/certs/myclientcert.pem
> set key-file None
> set mn-url https://dataone.org/mn
> log

Download the event log and save it to a file:

> log events.xml

40 Chapter 4. Contents

DataONE Python Products

4.2.3 Reference

Overview of operation

The DataONE Command Line Interface enables basic interactions with the DataONE infrastructure via the command
line.

Session

The CLI is built around the concept of session variables. Session variables are analogous to environment variables in
an operating system. The session variables store information that is often reused by multiple commands and minimize
the amount of typing that is required. For instance, one session variable is the Base URL to a Member Node. Whenever
a command is typed that will access a Member Node, the URL for the Member Node is pulled from the session.

The session can be saved and loaded from files. This allows easy switching between different roles by the user. For
instance, if a user often works with two different Member Nodes and creates different types of objects on them, he
can save the session after setting it up for each role, after which he can easily switch between them by loading the
appropriate session.

Read vs. write operations

The commands that cause operations to be issued against Coordinating Nodes and Member Nodes are divided into two
broad categories; read commands and write commands. These two categories are handled differently by the CLI. Read
operations are issued immediately and their results displayed on screen or saved to a file. Write operations, however,
are added to a queue, called the write operation queue, to be issued later.

Write operation queue

The DataONE infrastructure does not allow science objects to be modified or deleted once created. Objects can be
updated, but the original object stays in the system forever. The write operation queue allows operations to be viewed
and edited, thus adding a buffer where mistakes, such as typos, can be caught before the permanent operations are
issued.

Like read commands, write commands use session variables. Each time an operation is added to the write operation
queue, the relevant session variables are used for creating parameters for the operation. When an operation is later
issued, it uses the parameters stored in the operation, not the current session variables.

When the commands have been verified, the queue is issued with a single command, after which each of the operations
in the queue are automatically performed in sequence. If any operation fails, the process is stopped. The failed
operation and all subsequent operations remain in the queue and can be manipulated before the queue is issued again.
The successfully performed operations cannot be undone.

Access Policy

The Access Policy is a list of subjects and their associated access levels. The Access Policy is applied to new objects
as they are created. The Access Policy can also be updated on existing Science Data Objects.

4.2. DataONE Command Line Interface (CLI) 41

DataONE Python Products

Replication Policy

The Replication Policy contains a list of Member Nodes that are specifically preferred or blocked as replication targets.
The Replication Policy also contains a setting that specifies if replication is allowed or disallowed, and the preferred
number of replicas.

The Replication Policy is applied to new objects as they are created. The Replication Policy can also be updated on
existing Science Data Objects.

The DataONE infrastructure will never replicate an object to a Member Node that is in the list of blocked Member
Nodes for that object. If a Member Node is added to the list of blocked Member Nodes after an object has been
replicated to that Member Node, the DataONE infrastructure will request that the Member Node in question remove
its copy of the object.

If the preferred number of replicas is larger than the number of Member Nodes that have been specified as preferred
replication targets, additional Member Nodes that are not in the blocked list will automatically be selected as replica-
tion targets.

If the preferred number of replicas is modified on an existing Science Data Object, DataONE will adjust the number
of existing replicas by creating and deleting replicas of that object as needed.

Authentication

A user that accesses a Node may connect either anonymously or as an authenticated subject. The Node to which the
user connects will allow access to operations, Science Objects and other data based on the permissions that have been
granted to the subject for which the user has authenticated.

A user that connects anonymously is granted access only to publicly available operations and data. Access is typically
denied for operations that create or update data, such as the create operation.

When the CLI connects to a Node on a user’s behalf, it passes authentication information for that user via a certificate.
The certificate enables the user to act as a specific subject within a Node.

The user obtains a certificate for the subject with which to access a Node from CILogon. When the user downloads
a certificate from CILogon, the CILogon download process stores the certificate in a standard location. The CLI can
automatically find certificates in this location. In some cases, certificates may be stored in custom locations. In such
cases, the automatic location of certificates can be bypassed by setting the cert-path session parameter to the
filesystem path of the certificate. Because CILogon provides a certificate that holds both the public and private keys in
the same file, only cert-path is required and key-path should be set to None. If the certificate was obtained in
some other way, and the certificate’s private key is stored in a separate file, the key-path session parameter must be
set to the filesystem path of the private key.

When a user types a command that requires the CLI to connect to a Node, the CLI starts by examining the value of
the the anonymous session parameter. If the anonymous session parameter is True, the CLI ignores any available
certificate and connects to the DataONE Node without providing a certificate. This causes the Node to allow access
only to publicly available operations and data.

If the anonymous session parameter is False, the CLI attempts to locate the user’s certificate as described above. If
a certificate is not found, the operation is aborted. If a certificate is found, the CLI passes the certificate to the Node
when establishing the connection. The Node validates the certificate and may reject it, causing the operation to be
aborted. If the certificate is successfully validated, the Node grants access to the user, authenticated as the subject
designated in the certificate, and the CLI proceeds with the operation.

42 Chapter 4. Contents

DataONE Python Products

Startup

When the CLI is started, it attempts to load the Session variables from a default configuration file named .
dataone_cli.conf, located in the user’s home directory. If the configuration file is not present, the session
variables are set to default values as shown in the Default column in the overview of session variables.

The CLI then applies any options and executes any commands specified on the command line, in the specified order.
This includes any set commands that modify the session variables.

Command line arguments

The CLI accepts a set of options and arguments on the command line. The options are used for setting the session
variables. The arguments are executed as CLI commands. By default, the CLI will enter interactive mode after
modifying the session according to the options and executing any commands provided as arguments. This can be
prevented by passing the –no-interactive option or giving the exit command as the last argument. When the CLI enters
interactive mode, the session that was set up with command line options remains active.

The command line arguments can also include commands that alter the session. E.g., the following examples are
equivalent. Each will load the session from the user’s ~/.dataone_cli.conf file, download the mypid object
from mymembernode, store it in myfile and exit.

$ dataone --no-interactive --mn-url http://mymembernode.org/mn 'get mypid myfile'

$ dataone --no-interactive 'set mn-url http://mymembernode.org/mn' 'get mypid myfile'

$ dataone 'set mn-url http://mymembernode.org/mn' 'get mypid myfile' exit

Commands that contain spaces or other symbols that have special meaning to the shell must be quoted. The examples
use single quotes. Double quotes can also be used if it’s desired to have the shell expand variables.

Since any CLI command is accepted on the command line, sessions can also be loaded with the load [file] command.
If the CLI is called from a script, it may be desirable to start with a known, default session. This can be accomplished
by issuing the reset command before any other commands.

When the session variables are set with the options, they are all applied before any of the commands specified as
arguments are executed. When the session variables are specified with arguments, such as set [variable [value]], they
become active when they are specified and only apply to arguments specified later on the command line.

Also see Overview of command line options.

Commands

Table of Contents

• Commands

– Syntax

– CLI

* history

* exit

* exit

4.2. DataONE Command Line Interface (CLI) 43

DataONE Python Products

– Session, General

* set [variable [value]]

* load [file]

* save [config_file]

* reset

– Session, Access Control

* allowaccess <subject> [access level]

* denyaccess <subject>

* clearaccess

– Session, Replication Policy

* allowrep

* denyrep

* preferrep <member node> [member node . . .]

* blockrep <member node> [member node . . .]

* removerep <member node> [member node . . .]

* numberrep <number of replicas>

* clearrep

– Read Operations

* get <identifier> <file>

* meta <identifier> [file]

* list

* log

* resolve <pid>

– Write Operations

* create <pid> <file>

* update <old-pid> <new-pid> <file>

* package <package-pid> <science-metadata-pid> <science-pid> [science-pid . . .]

* archive <identifier> [identifier . . .]

* updateaccess <identifier> [identifier . . .]

* updatereplication <identifier> [identifier . . .]

– Utilities

* listformats

* listnodes

* ping [base-url . . .]

– Write Operation Queue

44 Chapter 4. Contents

DataONE Python Products

* queue

* run

* edit

* clearqueue

Syntax

<...> denotes required arguments.

[...] denotes optional arguments.

file is the filesystem path to a local file.

Commands are case sensitive.

CLI

Commands that relate to the operation of the Command Line Interface itself.

help —- Get help on commands

help or ? with no arguments displays a list of commands for which help is available

help <command> or ? <command> gives help on <command>

history

Display a list of commands that have been entered

exit

Exit from the CLI

exit

Exit from the CLI

Session, General

Commands that view and manipulate the session and the session variables.

set [variable [value]]

set (without parameters): Display the value of all session variables

set <session variable>: Display the value of a single session variable.

set <session variable> <value>: Set the value of a session variable.

4.2. DataONE Command Line Interface (CLI) 45

DataONE Python Products

See Access Policy and Replication Policy for information about how to set the Access Policy and Replication Policy
session variables.

An unset session variable has its value displayed as None. A session variable can either be a Boolean (True / False),
numeric or string value. See set [variable [value]] for more information on how to set session variables.

Also see overview of session variables.

load [file]

Load session variables from file

load (without parameters): Load session from default file ~/.dataone_cli.conf

load <file>: Load session from specified file

save [config_file]

Save session variables to file

save (without parameters): Save session to default file ~/.dataone_cli.conf

save <file>: Save session to specified file

reset

Set all session variables to their default values

The defaults are listed in the Default column in the overview of session variables.

Session, Access Control

The Access Policy is a list of subjects and their associated access levels. The Access Policy is applied to new objects
as they are created. The Access Policy can also be updated on existing Science Data Objects with updateaccess
<identifier> [identifier . . .].

Use the set [variable [value]] command without any parameters to view the current Access Policy.

allowaccess <subject> [access level]

Set the access level for subject

Access level is read, write‘ or changePermission.

Access level defaults to read if not specified.

Special subjects:

public: Any subject, authenticated and not authenticated

authenticatedUser: Any subject that has authenticated with CILogon

verifiedUser: Any subject that has authenticated with CILogon and has been verified by DataONE

46 Chapter 4. Contents

DataONE Python Products

Any access level implicitly includes less permissive levels. E.g., giving changePermission to a subject implicitly
gives read and write permissions as well.

To make objects accessible to the general public, give read access to the public user. In some cases, it is desirable to
obtain log records that include information about who accessed a given object while still making the object publicly
accessible. This can be accomplished by giving read access only to authenticatedUser. Access higher than read
should not be given to any of the special subjects.

denyaccess <subject>

Remove subject from Access Policy.

clearaccess

Remove all subjects from Access Policy.

Only the submitter will have access to the object.

Session, Replication Policy

allowrep

Allow new objects to be replicated

denyrep

Prevent new objects from being replicated

preferrep <member node> [member node . . .]

Add one or more preferred Member Nodes to replication policy

blockrep <member node> [member node . . .]

Add Member Node to list of blocked replication targets.

removerep <member node> [member node . . .]

Remove Member Node from list of preferred or blocked replication targets.

numberrep <number of replicas>

Set preferred number of replicas for new objects

If the preferred number of replicas is set to zero, replication is also disallowed.

4.2. DataONE Command Line Interface (CLI) 47

DataONE Python Products

clearrep

Set the replication policy to default

The default replication policy has no preferred or blocked member nodes, allows replication and sets the preferred
number of replicas to 3.

Read Operations

Commands that cause read operations to be issued against Coordinating Nodes and Member Nodes.

Commands for retrieving Science Data Objects, System Metadata and related information.

get <identifier> <file>

Get an object from a Member Node

The object is saved to file.

Active session variables: mn-url, Authentication

meta <identifier> [file]

Get the System Metadata that is associated with a Science Object

If the metadata is not on the Coordinating Node, the Member Node is checked.

Provide file to save the System Metada to disk instead of displaying it.

Active session variables: cn-url, Authentication

list

Retrieve a list of available Science Data Objects from Member Node

The response is filtered by the from-date, to-date, search, start and count session variables.

Active session variables: mn-url, start, count, from-date, to-date, search-format-id, Authentication

See also: search

log

Retrieve event log from Member Node

The response is filtered by the from-date, to-date, start and count session parameters.

Active session variables: mn-url, start, count, from-date, to-date, search-format-id, Authentication

resolve <pid>

Find all locations from which the given Science Object can be downloaded.

Active session variables: cn-url, Authentication

48 Chapter 4. Contents

DataONE Python Products

Write Operations

Commands that cause write operations to be issued against Coordinating Nodes and Member Nodes.

create <pid> <file>

Create a new Science Object on a Member Node.

The System Metadata that becomes associated with the new Science Object is generated from the session variables.

The algorithm set in algorithm is used for calculating the checksum for the new object. If the value is unset, it defaults
to the DataONE system wide default, which is currently SHA1.

Active session variables: mn-url, format-id, submitter, rights-holder, origin-mn, authoritative-mn, algorithm, Access
Policy, Replication Policy, Authentication

update <old-pid> <new-pid> <file>

Replace an existing Science Object in a MN with another.

The existing Science Object becomes obsoleted by the new Science Object. obsoleted by the new values in the System
Metadata, Access Policy and Replication Policy session variables.

The algorithm set in algorithm is used for calculating the checksum for the new object. If the value is unset, it defaults
to the DataONE system wide default, which is currently SHA1.

Active session variables: mn-url, format-id, submitter, rights-holder, origin-mn, authoritative-mn, algorithm, Access
Policy, Replication Policy, Authentication

package <package-pid> <science-metadata-pid> <science-pid> [science-pid . . .]

Create a simple OAI-ORE Resource Map on a Member Node

archive <identifier> [identifier . . .]

Mark one or more existing Science Objects as archived

updateaccess <identifier> [identifier . . .]

Update the Access Policy on one or more existing Science Data Objects

Requires that the calling subject has authenticated and has changePermission access level on the object for which
Access Policy is to be updated.

Active session variables: cn-url, Authentication, Access Policy

updatereplication <identifier> [identifier . . .]

Update the Replication Policy on one or more existing Science Data Objects

Requires that the calling subject has authenticated and has changePermission access level on the object for which
Replication Policy is to be updated.

4.2. DataONE Command Line Interface (CLI) 49

DataONE Python Products

Active session variables: cn-url, Replication Policy, Authentication

Utilities

listformats

Display all known Object Format IDs

listnodes

Display all known DataONE Nodes

search [query] Comprehensive search for Science Data Objects across all available MNs

See https://releases.dataone.org/online/api-documentation-v2.0.1/design/SearchMetadata.html for the available search
terms.

ping [base-url . . .]

Check if a server responds to the DataONE ping() API method ping (no arguments): Ping the CN and MN that is
specified in the session ping <base-url> [base-url . . .]: Ping each CN or MN

If an incomplete base-url is provided, default CN and MN base URLs at the given url are pinged.

Write Operation Queue

Commands that view and manipulate the write operation queue.

queue

Print the queue of write operations.

run

Perform each operation in the queue of write operations

edit

Edit the queue of write operations

clearqueue

Remove the operations in the queue of write operations without performing them

Overview of session variables

50 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0.1/design/SearchMetadata.html

DataONE Python Products

Name Default Type Description
CLI configuration
verbose False Boolean Display more information editor nano String Editor to use when editing the queue
Target Nodes
cn-url https://cn.dataone.org/cn String Node to which to connect for operations that access a DataONE Root CN
mn-url https://localhost/mn/ String Node to which to connect for operations that access a DataONE MN
Authentication
anonymous True Boolean Ignore any installed certificates and connect anonymously cert-file None String Filesystem path to client certificate
key-file None String Filesystem path to the client certificate private key. Not required if the certificate provided with certpath contains both the public and private keys
Slicing
start 0 Integer First item to display for operations that display lists of items
count 1000 Integer Maximum number of items to display for operations that display lists of items
Searching
query *:* String Query string (SOLR or Lucene query syntax) for searches
query-type solr String Select search engine (currently, only SOLR is available)
from-date None String Start time used by operations that accept a time range
to-date None String End time used by operations that accept a time range
search-format-id None String Include only objects of this format
Parameters | Misc
algorithm SHA-1 String Checksum algorithm to use when calculating the checksum for a Science Data Object
format-id None String ID for the Object Format to use when generating System Metadata
Parameters | Reference Nodes
authoritative-mn None String Authoritative Member Node to use when generating System Metadata
origin-mn None String Originating Member Node to use when generating System Metadata
Parameters | Subjects
rights-holder None String Subject of the rights holder to use when generating System Metadata
submitter None String Subject of the submitter to use when generating System Metadata
Access Control
Access Control Policy parameters managed by a separate set of commands.
Replication
Replication Policy parameters managed by a separate set of commands.

4.2.4 Implementation

Dependencies

DataONE Common

CLI

DataONE Client Library

4.2. DataONE Command Line Interface (CLI) 51

https://cn.dataone.org/cn
https://localhost/mn/

DataONE Python Products

Class hierarchy

main

CLI

CommandProcessor

Session

OperationMakerOperationQueue

OperationExecuter

OperationFormatter

ReplicationPolicyAccessControl SessionVariable

CLICNClient CLIMNClient PackageCreator SystemMetadataCreator

CLIClient

DataONE Client Library

DataONE Common

Command An action that causes changes only internal to the CLI.

Operation An action that causes one or more reads or writes against a DataONE Node.

main:

• Handle command line options.

• Capture and display internal and external exceptions.

CLI:

52 Chapter 4. Contents

DataONE Python Products

• Generic boiler plate for Python CLI apps.

• Simple command tokenizing and validation.

CommandProcessor:

• Manipulate the session.

• Create, then execute DataONE Read Operations.

• Create, then queue DataONE Write Operations.

• Execute queue of DataONE Write Operations.

• Display the results of DataONE Operations.

OperationMaker:

• Combine parameters from CommandProcessor and from the session into a DataONE Read or Write Oper-
ation.

OperationQueue:

• Hold a queue of DataONE Write Operations.

• Edit the queue.

• Display the queue.

OperationExecuter:

• Execute a DataONE Read Operation or a queue of Write Operations.

Utility classes

These are used throughout the main classes and so are kept out of main hierarchy for readability.

InvalidArguments CLIError ComplexPath MissingSysmetaParameters

Notes

• Read operations are executed immediately.

• Write operations are queued and executed in a batch. The write queue can be edited.

• Write operations are decoupled from the session. Each write operation contains a copy of the relevant session
variables at the time the operation was issued. Those variables are then used when the operation is executed.

4.2.5 Overview of command line options

Usage: dataone.py [command] ...

Options:
--algorithm=ALGORITHM

(continues on next page)

4.2. DataONE Command Line Interface (CLI) 53

DataONE Python Products

(continued from previous page)

Checksum algorithm used for a Science Data Object.
--anonymous Ignore any installed certificates and connect

anonymously
--no-anonymous Use the installed certificates and do not connect

anonymously
--authoritative-mn=MN-URI

Authoritative Member Node for generating System
Metadata.

--cert-file=FILE Path to client certificate
--count=COUNT Maximum number of items to display
--cn-url=URI URI to use for the Coordinating Node
--from-date=DATE Start time used by operations that accept a date range
--key-file=FILE File of client private key (not required if key is in

cert-file
--mn-url=URI Member Node URL
--format-id=OBJECT-FORMAT

ID for the Object Format to use when generating System
Metadata

--formatId=OBJECT-FORMAT
ID for the Object Format to use when generating System
Metadata

--origin-mn=MN-URI Originating Member Node to use when generating System
Metadata

--query=QUERY Query string (SOLR or Lucene query syntax) for
searches

--rights-holder=SUBJECT
Subject of the rights holder to use when generating
System Metadata

--search-format-id=OBJECT-FORMAT
Include only objects of this format when searching

--start=START First item to display for operations that display a
list_objects of items

--submitter=SUBJECT Subject of the submitter to use when generating System
Metadata

--to-date=DATE End time used by operations that accept a date range
-v, --verbose Display more information
--no-verbose Display less information
--editor Editor to use for editing operation queue
--no-editor Use editor specified in EDITOR environment variable
--allow-replication Allow objects to be replicated.
--disallow-replication

Do not allow objects to be replicated.
--replicas=#replicas Set the preferred number of replicas.
--add_blocked=MN Add blocked Member Node to access policy.
--add_preferred=MN Add Member Node to list_objects of preferred

replication targets.
--cn=HOST Name of the host to use for the Coordinating Node
--mn=HOST Name of the host to use for the Member Node
-i, --interactive Allow interactive commands
--no-interactive Don't allow interactive commands
-q, --quiet Display less information
--debug Print full stack trace and exit on errors
-h, --help show this help message and exit

54 Chapter 4. Contents

DataONE Python Products

4.2.6 Indices and tables

• genindex

• modindex

• search

4.3 Generic Member Node (GMN)

See DataONE Python Products for an overview of the DataONE libraries and other products implemented in Python.

The Generic Member Node (GMN) is a DataONE Member Node MN). It provides an implementation of MN APIs and
can be used by organizations to expose their science data to DataONE if they do not wish to create their own, native
MN.

GMN can be used as a standalone MN or it can be used for exposing data that is already available on the web, to
DataONE. When used in this way, GMN provides a DataONE compatible interface to existing data and does not store
the data.

GMN can also be used as a workbone or reference for a 3rd party MN implementation. If an organization wishes to
donate storage space to DataONE, GMN can be set up as a replication target.

Contents:

4.3.1 GMN setup overview

Setting up the DataONE Generic Member Node (GMN).

Verified setup procedures are provided for Ubuntu 16.04 LTS (Server and Desktop) and CentOS 7.3.

It may be possible to deploy GMN using a different stack, such as one based on nginx and uWSGI. Such setups are
currently untested, but if they are attempted and prove to have benefits, please let us know.

The GMN setup process has been broken down into two sections, each containing a series of steps. The first section
describes how to set up an instance of GMN which can be used only locally. The second section describes how to join
the GMN instance to DataONE. For testing GMN and learning about Member Nodes, only the first section need be
completed. For exposing data to the DataONE federation and providing storage for replicas, both the first and second
sections must be completed.

Along with the steps in each section, some background information is provided. The actual steps that need to be
performed are indented to separate them from the background information.

Commands that need to be run from the shell are prefixed with “$”.

The instructions describe an installation into subfolders of /var/local/dataone/. To install into another loca-
tion, all related paths must be adjusted accordingly.

The instructions describe how to set GMN up to run in a separate Apache Virtual Host on a fresh install of Ubuntu.
General setup and configuration issues, such as issues that may be encountered when adding GMN to an existing
server, are not covered.

The GMN software stack is installed into a Python virtual environment to avoid potential conflicts with other Python
software on the server.

Use the Next link in the sidebar to get to the next page of steps after completing the current page.

Contents:

4.3. Generic Member Node (GMN) 55

http://nginx.net/
http://projects.unbit.it/uwsgi/wiki/

DataONE Python Products

Hardware requirements and configuration

Setting up the hardware.

GMN is installed on a physical or virtual machine. Network connectivity is arranged so that GMN can be reached
from the DataONE CNs and from clients. Typically, this means that GMN is set up to be globally accessible from the
web.

GMN can be used in a mode where it provides a DataONE interface to data that is already available on the web. When
used in this way, GMN must also have access to the web site which holds the data.

The requirements for RAM, CPU, disk and network resources are workload dependent. Below is benchmarks for two
different setups.

Benchmarks

To give an indication of the hardware that may be required for hosting GMN, some benchmarks are provided.

Configuration of benchmarking scripts:

• Concurrent calls per API: 5

• Science object size: 1024 bytes.

• Allow rules per object: 10

• listObjects / getLogRecords page size: 1000 objects

Hardware configuration 1

Machine type Physical
CPU Intel Core2 Quad Q6600 @ 2.40GHz
RAM 4GiB
Disk 5400 RPM SATA (I/O @ 60 MiB/s)

API Transactions per second
MNStorage.create() 9.8
MNRead.get() 35.3
MNRead.listObjects() 0.5
MNCore.getLogRecords(), paged, called by CN 0.36
MNCore.getLogRecords(), specific object, called by regular subject 40.6
Combination of MNStorage.create(), MNRead.get(), MNRead.listObjects() 4.4
Combination of MNCore.getLogRecords(), MNRead.get() 36.2

Hardware configuration 2

Machine type Virtual
CPU Intel Xeon E7540 @ 2.00GHz
RAM 32GiB
Disk NFS (I/O @ 45MiB/s)

56 Chapter 4. Contents

DataONE Python Products

API Transactions per second
MNStorage.create() 9.3
MNRead.get() 5.6
MNRead.listObjects() 0.35
MNCore.getLogRecords(), paged, called by CN 0.2
MNCore.getLogRecords(), specific object, called by regular subject 6.0
Combination of MNStorage.create(), MNRead.get(), MNRead.listObjects() 2.8
Combination of MNCore.getLogRecords(), MNRead.get() 5.24

Setup on Ubuntu

This section describes the initial steps in setting up GMN. The procedure has been verified on Server and Desktop
versions of Ubuntu 18.04 LTS.

Instructions for CentOS are also available.

Complete this section to set up a stand-alone test instance of GMN. The stand-alone instance can be used for perfor-
mance testing, developing scripts for populating the MN and for learning about MNs in general.

The stand-alone test instance can then be joined to the DataONE production environment as an official Member Node
or to one of DataONE’s test environments for further testing by completing Registering the new MN in a DataONE
environment.

Contents:

GMN Dependencies and Platform Installation

The following steps require sudo access. They prepare the server for the part of the GMN installation that can be
performed as the gmn user.

Contents:

Update OS and install APT dependencies

Run the following commands to:

• Upgrade all installed packages to latest versions

• Install APT packaged GMN dependencies

• Set server clock to UTC timezone

• Open for HTTPS in the firewall

sudo -H bash -c '
apt update --yes
apt dist-upgrade --yes

'

Reboot if necessary.

sudo -H bash -c '
apt install --yes build-essential libssl-dev libxml2-dev libxslt1-dev \
libffi-dev postgresql openssl curl python-pip python3-venv \
python3-dev apache2 libapache2-mod-wsgi-py3 acl

(continues on next page)

4.3. Generic Member Node (GMN) 57

DataONE Python Products

(continued from previous page)

pip install --upgrade pip virtualenv

timedatectl set-timezone Etc/UTC
ufw allow 443

'

Create gmn Account and Configure Permissions

Run the following commands to:

• Create the gmn user account (with password login disabled)

• Add or update permissions allowing the gmn user to

– Create and edit Apache configuration files

– Restart the Apache and Postgres services

– Read Apache and Postgres logs

• Prepare the DataONE root directory

• Create Postgres role and database

Note: These commands can safely be run multiple times. Any missing permissions will be restored. Existing
permissions will not be duplicated.

sudo -H bash -c '
Create the gmn user account with password login disabled
id -u gmn 1>/dev/null 2>&1 || adduser --ingroup www-data \
--gecos "DataONE Generic Member Node" --disabled-password gmn

ERR=$(sudo -u postgres createuser gmn 2>&1)
[[${ERR} =~ "already exists"]] || echo ${ERR}
ERR=$(sudo -u postgres createdb -E UTF8 gmn3 2>&1)
[[${ERR} =~ "already exists"]] || echo ${ERR}

mkdir -p /var/local/dataone
chown -R gmn:www-data /var/local/dataone
chmod -R 00755 /var/local/dataone

Allow the gmn user to create and edit Apache configuration files
setfacl -Rm gmn:rwx /etc/apache2 /var/lib/apache2/site/enabled_by_admin/

Allow the gmn user to start and stop the Apache and Postgres services
for s in postgresql apache2; do
grep -q $s /etc/sudoers \

|| echo "gmn ALL=NOPASSWD:/etc/init.d/$s" >> /etc/sudoers
done

Allow the gmn user to read existing Postgres and Apache logs
setfacl -Rm gmn:rx /var/log/postgresql /var/log/apache2

Allow the gmn user to read future Postgres and Apache logs

(continues on next page)

58 Chapter 4. Contents

DataONE Python Products

(continued from previous page)

P="/etc/logrotate.d/gmn"
echo >$P "postrotate"
echo >>$P " setfacl -Rm gmn:rx /var/log/postgresql /var/log/apache2"
echo >>$P "endscript"

'

GMN Software Stack Installation

The following steps describe the part of the GMN installation that can be performed as the gmn user. It is assumed
that GMN Dependencies and Platform Installation has already been performed.

Contents:

Install the GMN software stack

Run the following commands to:

• Install the GMN software stack from PyPI into a Python virtual environment

• Install standard .bashrc for the gmn user

sudo -Hu gmn bash -c '
python3 -m venv /var/local/dataone/gmn_venv_py3
. /var/local/dataone/gmn_venv_py3/bin/activate
GMN_PKG_DIR=`python -c "import site; print(site.getsitepackages()[0])"`
pip install --upgrade pip virtualenv
pip install dataone.gmn
cp ${GMN_PKG_DIR}/d1_gmn/deployment/bashrc ~/.bashrc
chmod go+x ${GMN_PKG_DIR}/d1_gmn/manage.py

'

Install and configure Apache

Run the commands below to:

• Install default GMN configuration for Apache

• Set correct ServerName in GMN VirtualHost file

sudo -Hu gmn bash -c '
. /var/local/dataone/gmn_venv_py3/bin/activate
GMN_PKG_DIR=`python -c "import site; print(site.getsitepackages()[0])"`
FQDN=`python -c "import socket; print(socket.getfqdn())"`
CONF_PATH=/etc/apache2/sites-available/gmn3-ssl.conf
DELIMITER=`printf "#%.0s" {1..100}`

cp ${GMN_PKG_DIR}/d1_gmn/deployment/gmn3-ssl.conf ${CONF_PATH}

sed -Ei "s/www\.example\.com/${FQDN}/" ${CONF_PATH}

a2enmod wsgi ssl alias
a2dissite 000-default
a2ensite gmn3-ssl

(continues on next page)

4.3. Generic Member Node (GMN) 59

DataONE Python Products

(continued from previous page)

printf "%s\nUsing FQDN: %s\nIf this is incorrect, correct it in %s\n%s\n" \
${DELIMITER} ${FQDN} ${CONF_PATH} ${DELIMITER}

'

Configure the GMN asynchronous processes

Run the commands below to:

• Set up cron jobs for GMN’s asynchronous processes

sudo -Hu gmn bash -c '
. /var/local/dataone/gmn_venv_py3/bin/activate
GMN_PKG_DIR=`python -c "import site; print(site.getsitepackages()[0])"`
crontab -u gmn ${GMN_PKG_DIR}/d1_gmn/deployment/crontab

'

Altering the schedule

By default, the processes are set to run once every hour, with a random delay that distributes network traffic and CN
load over time. To alter the schedule, consult the crontab manual:

man 5 crontab

Local Certificate Authority (CA)

Authentication and authorization in the DataONE infrastructure is based on X.509 v3 certificates.

This section describes how to set up a CA, configure GMN to trust the new CA and how to use the CA to generate
client side certificates that can then be used for creating authenticated connections to GMN.

MNs that are registered with DataONE must trust the CILogon CAs. But, for security, CILogon issues certificates that
are only valid for 18 hours, and stand-alone nodes do not need to trust CILogon. So both stand-alone and registered
instances of GMN are set up to trust a locally generated CA. For stand-alone instances, this is typically the only
trusted CA. Registered instances also trust CILogon and DataONE. The local CA enables the administrator of the MN
to generate long lived certificates that can be used for creating authenticated connections to the MN. Common uses
for these certificates on both stand-alone and registered GMN instances include enabling automated connections to the
MN for performing tasks such as populating the Node with Science Objects. In addition, these certificates are used
for regular user oriented tasks such as accessing the node via the the DataONE Command Line Client on stand-alone
nodes.

Setting up the local CA

The local CA used for signing certificates that will be trusted by this (and no other) instance of GMN.

Run the commands below to:

• Generate local CA folders

• Copy custom OpenSSL configuration file

• Create the certificate database file

60 Chapter 4. Contents

DataONE Python Products

• Generate the private key and certificate signing request (CSR)

• Self-sign the CA

• Remove the CA CSR

sudo -Hu gmn bash -c '
. /var/local/dataone/gmn_venv_py3/bin/activate
GMN_PKG_DIR=`python -c "import site; print(site.getsitepackages()[0])"`
mkdir -p /var/local/dataone/certs/local_ca/{certs,newcerts,private}
cd /var/local/dataone/certs/local_ca
cp ${GMN_PKG_DIR}/d1_gmn/deployment/openssl.cnf .
touch index.txt
openssl req -config ./openssl.cnf -new -newkey rsa:2048 -keyout private/ca_key.pem -

→˓out ca_csr.pem
'

• Enter a password for the private key. Anyone who gains access to the key can create certificates that will be
trusted by your MN unless you protect it with a strong password.

• You will be prompted for the information that will become the DN of your CA certificate. All fields should be
filled with valid information. For Common Name, use something like “CA for GMN Client Side Certificates”.
Since the DN of the signing CA is included in all signed certificates, this helps indicate the intended use for
certificates signed by this CA. The Organization Name indicates where the client side certificates are valid.

sudo -Hu gmn bash -c '
cd /var/local/dataone/certs/local_ca
openssl ca -config ./openssl.cnf -create_serial \
-keyfile private/ca_key.pem -selfsign -extensions v3_ca_has_san \

-out ca_cert.pem -infiles ca_csr.pem
'

Answer “y” on the prompts.

Generate a client side certificate

Generate a client side certificate that is signed by the local CA.

• This certificate will be used in any outgoing connections made by the GMN instance while it is operating in
stand-alone mode and for initial tests.

• If more client side certificates are needed in the future, just repeat this section, changing the filenames of the
client_*.pem files.

• GMN does not include a system for securely managing the password for the private key of the client side
certificate so the password is removed.

• The private key implicitly contains the public key. For some use cases, it can be convenient to split out the
public key.

Run the commands below to:

• Generate the private key and certificate signing request (CSR)

• Remove the password from the private key

• Split public key from private key

• Sign the CSR for the client side certificate with the local CA

• Remove the client side certificate CSR

4.3. Generic Member Node (GMN) 61

DataONE Python Products

sudo -Hu gmn bash -c '
cd /var/local/dataone/certs/local_ca
openssl req -config ./openssl.cnf -new -newkey rsa:2048 -nodes \
-keyout private/client_key.pem -out client_csr.pem

'

• You will be prompted for the information that will become the DN of your client side certificate. All fields
should be filled with valid information. For the Common Name, provide a brief and unique name such as,
“localClient”.

sudo -Hu gmn bash -c '
cd /var/local/dataone/certs/local_ca
openssl rsa -in private/client_key.pem -out private/client_key_nopassword.pem
openssl rsa -in private/client_key_nopassword.pem -pubout -out client_public_key.pem
openssl ca -config ./openssl.cnf -in client_csr.pem -out client_cert.pem

'

Answer “y” on the prompts.

sudo -Hu gmn bash -c '
cd /var/local/dataone/certs/local_ca
rm client_csr.pem
rm ca_csr.pem

'

You now have a local CA root certificate and a certificate signed by that root:

ca_cert.pem: The CA root certificate
private/ca_key.pem: The CA root cert private key

client_cert.pem: The client side certificate
private/client_key.pem: The client side certificate private key
private/client_key_nopassword.pem: The client side certificate private key without
password
client_public_key.pem: The client side certificate public key

Set GMN up to trust the local CA root certificate

Add the local CA that was just created to the CAs trusted by GMN.

sudo -Hu gmn bash -c '
cd /var/local/dataone/certs/local_ca
mkdir -p ../ca
cp ca_cert.pem ../ca/local_ca.pem

'
sudo -H bash -c '

cd /var/local/dataone/certs/ca
c_rehash .

'

Install non-trusted client side certificate

Run the following commands to:

62 Chapter 4. Contents

DataONE Python Products

• Set GMN up to use the previously created locally signed client side certificate for outgoing connections.

sudo -Hu gmn bash -c '
cd /var/local/dataone/certs/local_ca
mkdir -p ../client
cp client_cert.pem private/client_key_nopassword.pem ../client

'

Install non-trusted server side certificate

Run the commands below to:

• Ensure that the ssl-cert package is installed

• Copy the certificate and key to the GMN standard locations

sudo -H bash -c '
apt install --yes ssl-cert
mkdir -p /var/local/dataone/certs/server
cp /etc/ssl/certs/ssl-cert-snakeoil.pem /var/local/dataone/certs/server/server_cert.

→˓pem
cp /etc/ssl/private/ssl-cert-snakeoil.key /var/local/dataone/certs/server/server_

→˓key_nopassword.pem
'

Final configuration and startup

Run the following commands to:

• Configure the GMN settings that are required for running a local instance of GMN.

• Initialize the GMN database

sudo -Hu gmn bash -c '
. /var/local/dataone/gmn_venv_py3/bin/activate
GMN_PKG_DIR=`python -c "import site; print(site.getsitepackages()[0])"`
FQDN=`python -c "import socket; print(socket.getfqdn())"`
DELIMITER=`printf "#%.0s" {1..100}`
SETTINGS_PATH=${GMN_PKG_DIR}/d1_gmn/settings.py
cp ${GMN_PKG_DIR}/d1_gmn/settings_template.py ${SETTINGS_PATH}
sed -Ei "s/MIDDLEWARE_CLASSES/MIDDLEWARE/" ${SETTINGS_PATH}
sed -Ei "s/'"'"'gmn2'"'"'/'"'"'gmn3'"'"'/" ${SETTINGS_PATH}
sed -Ei "s/(\s*)(.*my\.server\.name\.com.*)/\1'"'"'${FQDN}'"'"',/" ${SETTINGS_PATH}
python ${GMN_PKG_DIR}/d1_gmn/manage.py migrate --run-syncdb
printf "%s\nUsing FQDN: %s\nIf this is incorrect, correct it in %s\n%s\n" \
${DELIMITER} ${FQDN} ${SETTINGS_PATH} ${DELIMITER}

'

Starting GMN

GMN should now be ready to start. Simply restart Apache:

4.3. Generic Member Node (GMN) 63

DataONE Python Products

sudo service apache2 restart

Check the Apache logs for error messages. In case of any issues, refer to Troubleshooting

Continue to the next section to test your new node.

Test the installation on Ubuntu

The new stand-alone GMN instance is now ready to be tested.

After a successful installation, GMN exposes the complete REST interface that DataONE has defined for Member
Nodes.

The default installation makes GMN accessible both on the server’s loopback (localhost) and external interface(s). So
the tests outlined below can be performed on the local server or from a different host by replacing localhost with
the server’s external name or address.

Basic testing via web browser or curl

These initial tests can be performed via a web browser or the curl command line utility. By default, stand-alone
instances of GMN use a non-trusted “snakeoil” self-signed certificate. The browser will warn about this and may
require you to create a security exception. curl will need to be started with the --insecure switch. For example,
curl --insecure <url>.

After the stand-alone GMN instance passes the tests, it can be joined to DataONE by performing the Registering the
new MN in a DataONE environment section of the installation, in which the non-trusted certificate is replaced with a
publicly trusted certificate from a 3rd party CA.

Node document

Open:

https://localhost/mn/v2

You should see an XML document such as this:

<?xml version="1.0" ?>
<ns1:node replicate="false" state="up" synchronize="true" type="mn" xmlns:ns1="http://
→˓ns.dataone.org/service/types/v2.0">
<identifier>urn:node:MyMemberNode</identifier>
<name>My Member Node</name>
<description>Test Member Node</description>
<baseURL>https://localhost/mn</baseURL>
<services>
<service available="true" name="MNCore" version="v1"/>
<service available="true" name="MNRead" version="v1"/>
<service available="true" name="MNAuthorization" version="v1"/>
<service available="true" name="MNStorage" version="v1"/>
<service available="true" name="MNReplication" version="v1"/>
<service available="true" name="MNCore" version="v2"/>
<service available="true" name="MNRead" version="v2"/>
<service available="true" name="MNAuthorization" version="v2"/>
<service available="true" name="MNStorage" version="v2"/>
<service available="true" name="MNReplication" version="v2"/>

(continues on next page)

64 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html

DataONE Python Products

(continued from previous page)

</services>
<synchronization>
<schedule hour="*" mday="*" min="42" mon="*" sec="0" wday="?" year="*"/>

</synchronization>
<subject>CN=urn:node:MyMemberNode,DC=dataone,DC=org</subject>
<contactSubject>CN=My Name,O=Google,C=US,DC=cilogon,DC=org</contactSubject>

</ns1:node>

This is your Node document. It exposes information about your Node to the DataONE infrastructure. It currently
contains only default values. The Registering the new MN in a DataONE environment section of the installation
includes information on how to customize this document for your node.

Home page

GMN also has a home page with some basic statistics, available at:

https://localhost/mn/home

Note that the home endpoint is not part of DataONE’s API definition for Member Nodes, and so does not include a
DataONE API version designator (/v1/ or /v2/) in the URL.

Continue with the next installation section if the node is to be registered with DataONE.

Upgrade OS and GMN to latest versions

Contents:

Upgrade Ubuntu 14.04 or 16.04 to 18.04

OS Upgrade

Ubuntu 16.04 LTS can be upgraded directly to 18.04 LTS with do-release-upgrade. 14.04 LTS must first be
upgraded to 16.04 LTS, which means that the following procedure must be performed twice.

The dist-upgrade steps may seem redundant, but do-release-upgrade is more likely to complete success-
fully when the system is on the latest available kernel and packages.

sudo -H bash -c '
apt dist-upgrade
apt autoremove
reboot

'

sudo -H bash -c '
do-release-upgrade
reboot

'

sudo -H bash -c '
apt dist-upgrade
apt autoremove

(continues on next page)

4.3. Generic Member Node (GMN) 65

DataONE Python Products

(continued from previous page)

reboot
'

Postgres Upgrade

Ubuntu Postgres
14.04 9.3
16.04 9.5
18.04 10

As the table shows, upgrading from Ubuntu 14.04 or 16.04 to 18.04 causes Postgres to be upgraded from major verson
9 to 10. The database storage formats are not compatible between major versions of Postgres, so the databases must
be migrated from the old to the new version of Postgres.

The Ubuntu 18.04 upgrade process will install Postgres 10 side by side with Postgres 9.x. The
pg_upgradecluster migration script is installed as well. However, the migration itself is not performed.

Run the commands below in order to migrate the databases over to Postgres 10 and remove the old database services.

If upgrading from Ubuntu 14.04, replace 9.5 with 9.3. It is not necessary to perform a database migration after
upgrading to 16.04.

sudo -H bash -c '
pg_dropcluster --stop 10 main
pg_upgradecluster 9.5 main
apt remove postgresql-9.5*
reboot

'

Upgrading

This section describes how to migrate an existing, operational MN to GMN.

instance of GMN v1. If you are working on a fresh install, start at setup.

Because of changes in how later versions of GMN store System Metadata and Science Objects, there is no direct pip
based upgrade path from 1.x. Instead, 3.x is installed side by side with 1.x and an automatic process migrates settings
and contents from v1 to 3.x and switches Apache over to the new version.

The automated migration assumes that GMN v1 was installed with the default settings for filesystem locations and
database settings. If this is not the case, constants in the migration scripts must be updated before the procedure will
work correctly. Contact us for assistance.

The existing v1 instance is not modified by this procedure, so it is possible to roll back to v1 if there are any issues
with the migration or 3.x.

Install GMN 3.x and migrate settings and contents

Prepare pip from PyPI:

66 Chapter 4. Contents

DataONE Python Products

$ sudo apt install --yes python-pip; \
sudo pip install --upgrade pip; \
sudo apt remove --yes python-pip;

Prepare dependencies:

$ sudo pip install --upgrade pip virtualenv
$ sudo apt install --yes libffi-dev

Create virtual environment for GMN 3.x:

$ sudo -u gmn virtualenv /var/local/dataone/gmn_venv_py3

Install GMN 3.x from PyPI:

$ sudo -u gmn --set-home /var/local/dataone/gmn_venv_py3/bin/pip install dataone.gmn

Configure GMN 3.x instance and migrate settings from GMN v1:

$ sudo /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/deployment/
→˓migrate_v1_to_v2.sh

Migrate contents from GMN v1:

$ sudo -u gmn /var/local/dataone/gmn_venv_py3/bin/python \
/var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/manage.py \
migrate_v1_to_v2

Verify successful upgrade:

• Seen from the user side, the main improvement in GMN v2 is that it adds support for v2 of the DataONE API.
For any clients that continue to access GMN via the v1 API, there should be no apparent difference between v1
and v2. Clients that access GMN via the v2 API gain access to the new v2 functionality, such as Serial IDs.

• A quick way to check if the node is now running GMN 3.x is to open the v2 Node document in a browser, at
https://your.node.edu/mn/v2. An XML document which announces both v1 and v2 services should be displayed.

Roll back to GMN v1

If there are any issues with GMN v2 or the migration procedure, please contact us for assistance. While the issues are
being resolved, the following procedure will roll back to v1.

This procedure should not be performed after any new objects have been added to v2, as they will become unavailable
in v1.

Switch the GMN version served by Apache to v1:

$ sudo a2dissite gmn3-ssl
$ sudo a2ensite gmn-ssl

Disable v2 services for this MN in the CN Node registry:

$ sudo -u gmn /var/local/dataone/gmn/bin/python \
/var/local/dataone/gmn/lib/python3.6/site-packages/gmn/manage.py \
register_node_with_dataone --update

4.3. Generic Member Node (GMN) 67

https://your.node.edu/mn/v2

DataONE Python Products

APT based install

This avoids dependencies on PyPI, which may result in a more secure deployment.

sudo apt update -y
sudo apt dist-upgrade -y

sudo apt install -y \
python3 \
python3-asn1crypto \
python3-certifi \
python3-cffi \
python3-chardet \
python3-contextlib2 \
python3-cryptography \
python3-django \
python3-idna \
python3-iso8601 \
python3-isodate \
python3-lxml \
python3-msgpack \
python3-pkg-resources \
python3-psycopg2 \
python3-pyasn1 \
python3-pycparser \
python3-jwt \
python3-pyparsing \
python3-tz \
python3-pyxb \
python3-rdflib \
python3-requests-toolbelt \
python3-requests \
python3-six \
python3-urllib3 \
python3-zipstream

apt install python3-setuptools

nano /usr/local/lib/python3.6/dist-packages/dataone.pth

/var/local/dataone/d1_python/lib_client/src
/var/local/dataone/d1_python/lib_common/src
/var/local/dataone/d1_python/gmn/src
/var/local/dataone/d1_python/lib_scimeta/src

GMN_PKG_DIR=/var/local/dataone/d1_python/gmn/src
FQDN=`python -c "import socket; print(socket.getfqdn())"`

sudo -H

apt install --yes apache2 apache2-dev libapache2-mod-wsgi-py3

cp ${GMN_PKG_DIR}/d1_gmn/deployment/gmn3-ssl.conf /etc/apache2/sites-available
sed -Ei "s/www.example.com/${FQDN}/" ${CONF_PATH}

a2enmod --quiet wsgi ssl alias

(continues on next page)

68 Chapter 4. Contents

DataONE Python Products

(continued from previous page)

a2ensite --quiet gmn3-ssl

apt install --yes postgresql
passwd -d postgres
su postgres -c passwd

su postgres -c 'createuser gmn'
su postgres -c 'createdb -E UTF8 gmn2'

mkdir -p /var/local/dataone/certs/local_ca/{certs,newcerts,private}
cd /var/local/dataone/certs/local_ca
cp ${GMN_PKG_DIR}/d1_gmn/deployment/openssl.cnf .
touch index.txt

openssl req -config ./openssl.cnf -new -newkey rsa:2048 \
-keyout private/ca_key.pem -out ca_csr.pem

openssl ca -config ./openssl.cnf -create_serial \
-keyfile private/ca_key.pem -selfsign -extensions v3_ca_has_san \
-out ca_cert.pem -infiles ca_csr.pem

cd /var/local/dataone/certs/local_ca

openssl req -config ./openssl.cnf -new -newkey rsa:2048 -nodes \
-keyout private/client_key.pem -out client_csr.pem

Install non trusted certs here.

cd /var/local/dataone/certs/local_ca
mkdir -p ../ca
cp ca_cert.pem ../ca/local_ca.pem
sudo c_rehash ../ca

cp ${GMN_PKG_DIR}/d1_gmn/settings_template.py ${GMN_PKG_DIR}/d1_gmn/settings.py

chown -R gmn:www-data /var/local/dataone/
chmod -R g+w /var/local/dataone/
timedatectl set-timezone Etc/UTC
ufw allow 443

python3 ${GMN_PKG_DIR}/d1_gmn/manage.py migrate --run-syncdb

settings.py:

MIDDLEWARE -> MIDDLEWARE

Setup on CentOS

This section describes the initial steps in setting up GMN. It has been verified CentOS 7.3. Instructions for Ubuntu are
also available.

If only this section is completed, the resulting installation is a stand-alone test instance of GMN. The stand-alone
instance can be used for performance testing, developing scripts for populating the MN and for learning about MNs in
general.

4.3. Generic Member Node (GMN) 69

DataONE Python Products

By completing Registering the new MN in a DataONE environment, the stand-alone test instance can then be joined
to DataONE as an official Member Node.

Contents:

CentOS 7.3 Firewall Setup

Install firewalld

GMN will require ports 80 and 443 to be opened. So after logging in to your server as a user with sudoer privileges, the first step is to get the firewall
setup. We begin by ensuring that the firewall management package is installed on your server and started.

Update yum.:

$ sudo yum -y update

Install firewalld:

$ sudo yum install firewalld
$ sudo systemctl unmask firewalld
$ sudo systemctl start firewalld

Configure Firewall with Network Interfaces

Next we want to achieve the binding of network interfaces to firewalld zones. This example uses the default public
zone. First we need to identify your network interfaces.:

$ ifconfig -a

The interfaces described in response will look something like this:

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 138.197.100.216 netmask 255.255.240.0 broadcast 138.197.111.255
inet6 fe80::3c64:d3ff:fe95:187b prefixlen 64 scopeid 0x20<link>
ether 3e:64:d3:95:18:7b txqueuelen 1000 (Ethernet)
RX packets 467254 bytes 268127560 (255.7 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 335825 bytes 72203530 (68.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether f2:ac:61:7b:73:10 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1 (Local Loopback)
RX packets 81687 bytes 26998580 (25.7 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 81687 bytes 26998580 (25.7 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

70 Chapter 4. Contents

DataONE Python Products

There should be one or more network interfaces available, such as “eth0” or “eth1”. Ignore an entry such as “LOOP-
BACK,RUNNING”.The firewall management system we are using binds these network interfaces to something called
a “zone”. There is the potential for multiple zones which can have different configuration options, but we aren’t going
to worry about that here. We just need t he simplest configuration using the default zone. The public zone will be the
default. So at this point we will check whether or not the network interfaces we identified with “ifconfig -a” are bound
to the public zone. We can check that with this command:

$ sudo firewall-cmd --zone=public --list-all

Which return:

public (active)
target: default
icmp-block-inversion: no
interfaces:
sources:
services: dhcpv6-client http https ssh
ports: 443/tcp
protocols:
masquerade: no
forward-ports:
sourceports:
icmp-blocks:
rich rules:

If the space next to the “interfaces” line contains the network interfaces, such as eth0 and eth1 in this example, then
they are already bound to the public zone. However, if that line is empty, you will need to bind your network interfaces
to the firewall zone as follows.

Bind Network Interfaces to Zone:

$ sudo firewall-cmd --permanent --zone=public --change-interface=eth0
$ sudo firewall-cmd --permanent --zone=public --change-interface=eth1
$ sudo firewall-cmd --reload

Substituting the names of your interfaces in --change-interface=. Now, when you enter the command:

$ sudo firewall-cmd --zone=public --list-all

The network interfaces should be listed:

public (active)
target: default
icmp-block-inversion: no
interfaces: eth0 eth1
sources:
services: dhcpv6-client ssh
ports:
protocols:
masquerade: no
forward-ports:
sourceports:
icmp-blocks:
rich rules:

Another way to confirm that everything is as it should be is to use this command:

4.3. Generic Member Node (GMN) 71

DataONE Python Products

$ firewall-cmd --get-active-zones

Which will return output similar to:

public
interfaces: eth1 eth0

Open HTTP & HTTPS Ports

Now we can specify rules for handling specific ports and services, using the below commands.:

$ sudo firewall-cmd --permanent --add-service=http
$ sudo firewall-cmd --permanent --add-service=https
$ sudo firewall-cmd --permanent --add-port=80/tcp
$ sudo firewall-cmd --permanent --add-port=443/tcp
$ sudo firewall-cmd --reload

$ sudo systemctl enable firewalld

Install Web Server & Create GMN User

Apache

Install Apache:

$ sudo yum -y install httpd

Start Apache and configure to start on boot:

$ sudo systemctl start httpd
$ sudo systemctl enable httpd
$ sudo systemctl enable httpd.service

To confirm apache is running, check the status:

$ sudo systemctl status httpd

Now is a good time to check if Apache is listening on port 80 by default as it should be:

$ netstat -ln | grep -E :'80'

Which will return output similar to:

tcp6 0 0 :::80 :::* LISTEN

If the command returns nothing, then something isn’t right. You should go back and review the previous steps.

Create GMN User

Change ownership of document root so it and its contents are in the same group as the web server:

72 Chapter 4. Contents

DataONE Python Products

$ sudo chgrp -R apache /var/www/html

Now that apache is installed you can create a user and add it to the apache group:

$ sudo useradd -G apache gmn
$ sudo passwd gmn

Installing Postgres

Install Postgres:

$ sudo yum -y install postgresql postgresql-devel postgresql-libs postgresql-plpython
→˓postgresql-server

Initialize the Database & Configure to start on boot:

$ sudo postgresql-setup initdb
$ sudo service postgresql start
$ sudo chkconfig postgresql on

$ sudo passwd -d postgres
$ sudo su postgres -c passwd

$ sudo -u postgres createuser gmn
$ sudo -u postgres createdb -E UTF8 gmn2

Installing GMN Software & Supporting Packages

Install Packages & Pip

Install development tools and other needed packages:

$ sudo yum groupinstall -y 'development tools'
$ sudo yum -y install python-devel openssl-devel libxml2-devel
$ sudo yum -y install libxslt-devel libffi-devel curl mod_ssl
$ sudo yum -y install openssl-perl gcc mod_wsgi

Install pip:

$ sudo easy_install pip

Install GMN Software in Virtual Environment

Install the virtualenv command. We can get this using pip:

$ pip install virtualenv

Setup directories:

$ sudo mkdir -p /var/local/dataone/{gmn_venv_py3,gmn_object_store}
$ cd /var/local/dataone
$ sudo chown gmn:apache gmn_venv_py3

4.3. Generic Member Node (GMN) 73

DataONE Python Products

Create and activate a virtual environment in the gmn_venv_py3 directory:

sudo -Hu gmn bash -c '
virtualenv gmn_venv_py3
source gmn_venv_py3/bin/activate
pip install --upgrade setuptools==33.1.1
pip install dataone.gmn

'

Configure the GMN Python virtual environment to be the default for the gmn user.:

$ su MySudoUser
$ sudo vi /home/gmn/.bashrc

This will take you into a text editor. Use the “i” key to enter insert mode. You will see the word ‘INSERT’ at the
bottom when this is active, which means you can edit the contents. Add the following lines to the end of the file.:

This next line added as part of GMN installation setup:
PATH="$PATH":/var/local/dataone/gmn_venv_py3/bin/

Then use Escape key and “:wq” to write the changes to the file and exit the editor.

Setup GMN Vhost & SSL Configuration

First we will remove default SSL.conf and add a custom config virtual host file. The basic unit of configuration for an
individual website is called a “virtual host” or “vhost”. A virtual host directive will let the server know where to find
your site’s files, where you want log files to go, which port the configuration applies to, and can contain a variety of
other instructions for how the web server should handle this site. For your convenience, a virtual host file is already
provided with your GMN installation files.

Remove the default ssl.conf file containing a default vhost:

$ cd /etc/httpd/conf.d/
$ sudo rm ssl.conf

Copy over and edit gmn3-ssl.conf virtual host file:

$ sudo cp /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/
→˓deployment/gmn3-ssl.conf /etc/httpd/conf.d/
$ sudo vi gmn3-ssl.conf

Change the ServerName to your domain, which should already be pointed at your server’s IP. This must be consistent
with the domain as it will be expressed when registering an SSL certificate.

Change server admin to appropriate email contact.

Replace {$APACHE_DIR} in log file declarations with “logs” because that is defined for Apache on Debian. So the
log declarations should read:

ErrorLog logs/error.log
CustomLog logs/access.log combined

Add the below text to the top of the file, above the start of the <IfModule mod_ssl.c> directive and Virtualhost entry.
This is basically combining the default ssl.conf configurations with the GMN virtual host configuration:

74 Chapter 4. Contents

DataONE Python Products

LoadModule ssl_module modules/mod_ssl.so

These lines come from the default ssl.conf file:
Listen 443 https
SSLPassPhraseDialog exec:/usr/libexec/httpd-ssl-pass-dialog
SSLSessionCache shmcb:/run/httpd/sslcache(512000)
SSLSessionCacheTimeout 300
SSLRandomSeed startup file:/dev/urandom 256
SSLRandomSeed connect builtin
SSLCryptoDevice builtin

Disable for protection against vulnerabilities such as POODLE.
SSLProtocol all -SSLv3 -SSLv2

SSLCipherSuite "EECDH+ECDSA+AESGCM EECDH+aRSA+AESGCM EECDH+ECDSA+SHA384
→˓EECDH+ECDSA+SHA256 EECDH+aRSA+SHA384 EECDH+aRSA+SHA256 EECDH+aRSA+RC4 EECDH
→˓EDH+aRSA RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP !PSK !SRP !DSS !RC4"

Don’t try to restart apache yet! Ordinarily, one might expect to restart apache at this point. However, the custom .conf
file just copied over contains several references to certificate files and directories we have not yet created, so a restart
would fail at this point.

Install Server SLL Certificate

SSL certificates accomplish several things. For example, they provide for encrypted communication. They also support
a feature whereby browsers will recognize whether or not a server’s SSL certificate has come from a trusted Certificate
Authority.

These instructions cover three options for handling server SSL certificates. Please review all three options and select
the one that is most appropriate for your installation.

Option 1: Install an Externally Generated SSL Cert from a Trusted CA

Either you or your IT department may have already acquired an SSL certificate registered for the domain that is
pointing to the server where you are installing GMN. If so, then just create the directory:

$ sudo mkdir -p /var/local/dataone/certs/server

And copy your server certificate and corresponding key into it.

Option 2: Create a Self-Signed SSL Cert for Testing

It is possible to create a self-signed certificate. While this certificate will not be trusted by browsers, it will still be
useful for testing that our SSL configurations are working. The below command will generate the certificate and key,
putting them in the location where the gmn3-ssl.conf file has been told to look for it:

$ sudo mkdir -p /var/local/dataone/certs/server
$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /var/local/dataone/
→˓certs/server/server_key_nopassword.pem -out /var/local/dataone/certs/server/server_
→˓cert.pem

4.3. Generic Member Node (GMN) 75

DataONE Python Products

You will be asked to enter some information as shown below. Be sure to enter the domain being pointed at your
server’s IP for the Common Name. Don’t forget that this should be consistent with the domain we configured as the
ServerName in the gmn3-ssl.conf file:

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:Tennessee
Locality Name (eg, city) [Default City]:Oak Ridge
Organization Name (eg, company) [Default Company Ltd]:GMN Test Org
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:gmn.example.edu
Email Address []: admin@example.edu

At this point you should be able to navigate to your domain in a browser or with curl and see the apache default
webpage. If using a browser, you’ll have to exception the security complaint, as the browser won’t trust a self-signed
certificate as secure. If using curl, you’ll need to add the –insecure option. For example:

$ curl --insecure https://gmn.example.edu

Option 3: Create and Install a Free Cert using Let’s Encrypt

If you don’t have a certificate from a CA yet, you can make one for free. Let’s Encrypt is “a free, automated, and
open certificate authority (CA), run for the public’s benefit”. It is widely gaining traction as an alternative to the
traditionally pricey cost of SSL certificates from trusted Certificate Authorities. More information is available at
https://letsencrypt.org/. This section will walk you through the steps of acquiring an SSL Cert from Let’s Encrypt.
The instructions assume that (A) you have already pointed your domain/subdomain at the installation server, and (B)
the virtual host for the domain has already been configured in the web server.

A package called Certbot is the easiest way to generate a certificate using Let’s Encrypt. Certbot is found in EPEL
(Extra Packages for Enterprise Linux). To use Certbot, you must first enable the EPEL repository:

$ sudo yum install epel-release

Install Certbot:

$ sudo yum install python-certbot-apache

Certbot has a fairly solid beta-quality Apache plugin, which is supported on many platforms, and automates both
obtaining and installing certs. To generate the certificate:

$ sudo certbot --apache -d gmn.example.edu

You will be asked to enter a contact email. Choose the https only option when you get to that part. After the script is
finished, you should be provided a link you can use to test your SSL configurations, such as:

Congratulations! You have successfully enabled https://centos7-3gmn.kitty.ninja

You should test your configuration at:
https://www.ssllabs.com/ssltest/analyze.html?d=gmn.example.edu

Clicking on that link will take you to a recommended tool by SSL labs which will provide a rating for your server’s
SSL configurations. Following the recommended configurations outlined in these instructions should result in getting
an A rating. If you get less than that, feel free to ask for suggestions on how to improve your rating.

Use the following command to show information about the certificate that was generated:

76 Chapter 4. Contents

https://letsencrypt.org/

DataONE Python Products

$ sudo certbot certificates

Which will provide output similar to:

Found the following certs:

Certificate Name: gmn.example.edu
Domains: gmn.example.edu
Expiry Date: 2017-06-21 18:22:00+00:00 (VALID: 89 days)
Certificate Path: /etc/letsencrypt/live/gmn.example.edu/fullchain.pem
Private Key Path: /etc/letsencrypt/live/gmn.example.edu/privkey.pem

However, you should not need to update your vhost with this information. If you go back and look at the contents of
the GMN virtual host file:

$ vi /etc/httpd/conf.d/gmn3-ssl.conf

You’ll see that the paths for SSLCertificateFile and SSLCertificateKeyFile have automatically been updated for you.

Local Certificate Authority (CA)

Authentication and authorization in the DataONE infrastructure is based on X.509 v3 certificates.

This section describes how to set up a CA, configure GMN to trust the new CA and how to use the CA to generate
client side certificates that can then be used for creating authenticated connections to GMN.

MNs that are registered with DataONE must trust the CILogon CAs. But, for security, CILogon issues certificates that
are only valid for 18 hours, and stand-alone nodes do not need to trust CILogon. So both stand-alone and registered
instances of GMN are set up to trust a locally generated CA. For stand-alone instances, this is typically the only
trusted CA. Registered instances also trust CILogon and DataONE. The local CA enables the administrator of the MN
to generate long lived certificates that can be used for creating authenticated connections to the MN. Common uses
for these certificates on both stand-alone and registered GMN instances include enabling automated connections to the
MN for performing tasks such as populating the Node with Science Objects. In addition, these certificates are used
for regular user oriented tasks such as accessing the node via the the DataONE Command Line Client on stand-alone
nodes.

Setting up the local CA

The local CA used for signing certificates that will be trusted by this (and no other) instance of GMN.

Generate local CA folders:

$ sudo mkdir -p /var/local/dataone/certs/local_ca/{certs,newcerts,private}
$ cd /var/local/dataone/certs/local_ca

Copy custom OpenSSL configuration file:

$ sudo cp /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/
→˓deployment/openssl.cnf .

Create the certificate database file:

$ sudo touch index.txt

4.3. Generic Member Node (GMN) 77

DataONE Python Products

Generate the private key and certificate signing request (CSR):

$ sudo openssl req -config ./openssl.cnf -new -newkey rsa:2048 \
-keyout private/ca_key.pem -out ca_csr.pem

Enter a password for the private key. Anyone who gains access to the key can create certificates that will
be trusted by your MN unless you protect it with a strong password.

You will be prompted for the information that will become the DN of your CA certificate. All fields
should be filled with valid information. For Common Name, use something like “CA for GMN Client
Side Certificates”. Since the DN of the signing CA is included in all signed certificates, this helps indicate
the intended use for certificates signed by this CA. The Organization Name indicates where the client side
certificates are valid.

Self-sign the CA:

$ sudo openssl ca -config ./openssl.cnf -create_serial \
-keyfile private/ca_key.pem -selfsign -extensions v3_ca_has_san \
-out ca_cert.pem -infiles ca_csr.pem

Answer “y” on the prompts.

The CSR is no longer needed and can be removed:

$ sudo rm ca_csr.pem

Generate a client side certificate

Generate a client side certificate that is signed by the local CA.

This certificate will be used in any outgoing connections made by the GMN instance while it is operating in stand-alone
mode and for initial tests.

If more client side certificates are needed in the future, just repeat this section, changing the filenames of the
client_*.pem files.

Generate the private key and certificate signing request (CSR):

$ cd /var/local/dataone/certs/local_ca
$ sudo openssl req -config ./openssl.cnf -new -newkey rsa:2048 -nodes \
-keyout private/client_key.pem -out client_csr.pem

You will be prompted for the information that will become the DN of your client side certificate. All fields
should be filled with valid information. For the Common Name, provide a brief and unique name such as,
“localClient”.

GMN does not include a system for securely managing the password for the private key of the client side certificate so
the password is removed.

Remove the password from the private key:

$ sudo openssl rsa -in private/client_key.pem \
-out private/client_key_nopassword.pem

The private key implicitly contains the public key. For some use cases, it can be convenient to split out the public key.

Split public key from private key:

78 Chapter 4. Contents

DataONE Python Products

$ sudo openssl rsa -in private/client_key_nopassword.pem -pubout \
-out client_public_key.pem

Sign the CSR for the client side certificate with the local CA:

$ sudo openssl ca -config ./openssl.cnf -in client_csr.pem \
-out client_cert.pem

Answer “y” on the prompts.

The CSR is no longer needed and can be removed:

$ sudo rm client_csr.pem

You now have a local CA root certificate and a certificate signed by that root:

ca_cert.pem: The CA root certificate
private/ca_key.pem: The CA root cert private key

client_cert.pem: The client side certificate
private/client_key.pem: The client side certificate private key
private/client_key_nopassword.pem: The client side certificate private key without
password
client_public_key.pem: The client side certificate public key

Set GMN up to trust the local CA root certificate

Add the local CA that was just created to the CAs trusted by GMN:

$ cd /var/local/dataone/certs/local_ca
$ sudo mkdir -p ../ca
$ sudo cp ca_cert.pem ../ca/local_ca.pem
$ sudo c_rehash ../ca

Install non-trusted client side certificate

In addition to acting as servers in the DataONE infrastructure, Member Nodes also act as clients, initiating connections
to other Nodes. When connecting to other Nodes, Member Nodes authenticate themselves in a process called client
side authentication, in which a client side certificate is provided over an LTS/SSL connection.

Nodes that are registered with DataONE will only trust Member Node connections where a client side sertificate issued
by the DataONE CA is provided. However, a stand-alone instance of GMN will not connect to registered Member
Nodes, so a non-trusted client side certificate can be used instead.

These instructions use a non-trusted client side certificate for the first part of the install and describe how to upgrade
the certificate to a certificate issued by the DataONE CA in the optional section on how to register the node.

If you already have a client side certificate issued by the DataONE CA, you can still install the non-trusted certificate
here and just follow the instructions to upgrade it later.

Copy the previously created locally signed client side certificate for outgoing connections:

$ cd /var/local/dataone/certs/local_ca
$ sudo mkdir -p ../client
$ sudo cp client_cert.pem private/client_key_nopassword.pem ../client

4.3. Generic Member Node (GMN) 79

DataONE Python Products

Configure the GMN asynchronous processes

CNs may send various messages to MNs. These include replication requests and System Metadata update notifications.
Such requests are queued by GMN and handled asynchronously.

The asynchronous processes are implemented as Django management commands that are launched at regular intervals
by cron. The management commands examine the queues and process the requests.

The asynchronous processes connect to CNs and other MNs on behalf of your GMN instance. These connections are
made over TLS/SSL and use the client side certificate stored in /var/local/dataone/certs/client.

Set up cron jobs

Edit the cron table for the gmn user:

$ sudo crontab -e -u gmn

Add:

GMN_ROOT = /var/local/dataone/gmn_venv_py3
SERVICE_ROOT = /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/
→˓d1_gmn
PYTHON_BIN = /var/local/dataone/gmn_venv_py3/bin/python

* * * * * sleep $(expr $RANDOM \% $(30 * 60)) ; $PYTHON_BIN $SERVICE_ROOT/
→˓manage.py process_replication_queue >> $SERVICE_ROOT/gmn_replication.log 1>
→˓&1
Process the System Metadata refresh queue

* * * * * sleep $(expr $RANDOM \% $(30 * 60)) ; $PYTHON_BIN $SERVICE_ROOT/
→˓manage.py process_refresh_queue >> $SERVICE_ROOT/gmn_sysmeta.log 2>&1

This sets the processes to run once every hour, with a random delay that distributes network traffic and
CN load over time. To alter the schedule, consult the crontab manual:

$ man 5 crontab

Basic Configuration

Configure the GMN settings that are required for running a local instance of GMN.

Create a copy of the GMN site settings template:

$ cd /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn
$ sudo cp settings_template.py settings.py

For a basic local standalone install, all the settings can be left at their defaults.

Final configuration and startup

Filesystem permissions

Set all the files to be owned by the gmn account, and to be writable by www-data:

80 Chapter 4. Contents

DataONE Python Products

$ sudo chown -R gmn:apache /var/local/dataone
$ sudo chmod -R g+w /var/local/dataone/

Initialize the database

sudo -Hu gmn bash -c '
cd /var/local/dataone
source gmn_venv_py3/bin/activate
python /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/

→˓manage.py migrate --run-syncdb
'

Set server to UTC timezone (recommended)

GMN translates incoming date-times to UTC and provides outgoing date-times in UTC. Because of this, it is conve-
nient to run the server in UTC, so that server related timestamps, such as the ones in logs, match up with timestamps
stored in the GMN database and provided in DataONE REST API responses.

To check your time format:

$ date

The output should specify that that time given is in UTC, for example:

[mySudoerUser@centos7 dataone]$ date
Thu Mar 23 20:27:52 UTC 2017

If not in UTC time, try:

$ rm -f /etc/localtime; ln -s /usr/share/zoneinfo/UTC /etc/localtime
$ echo 'ZONE="UTC"' > /etc/sysconfig/clock

Starting GMN

GMN should now be ready to start. Simply restart Apache:

$ sudo service httpd restart

Check the Apache logs for error messages. In case of any issues, refer to Troubleshooting

Continue to the next section to test your new node.

Test the installation on CentOS

The new stand-alone GMN instance is now ready to be tested.

After a successful installation, GMN exposes the complete REST interface that DataONE has defined for Member
Nodes.

The default installation makes GMN accessible both on the server’s loopback (localhost) and external interface(s). So
the tests outlined below can be performed on the local server or from a different host by replacing localhost with
the server’s external name or address.

4.3. Generic Member Node (GMN) 81

http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html
http://mule1.dataone.org/ArchitectureDocs-current/apis/MN_APIs.html

DataONE Python Products

Basic testing via web browser or curl

These initial tests can be performed via a web browser or the curl command line utility. By default, stand-alone
instances of GMN use a non-trusted “snakeoil” self-signed certificate. The browser will warn about this and may
require you to create a security exception. curl will need to be started with the --insecure switch. For example,
curl --insecure <url>.

After the stand-alone GMN instance passes the tests, it can be joined to DataONE by performing the Registering the
new MN in a DataONE environment section of the installation, in which the non-trusted certificate is replaced with a
publicly trusted certificate from a 3rd party CA.

Node document

Open:

https://localhost/mn/v2

You should see an XML document such as this:

<?xml version="1.0" ?>
<ns1:node replicate="false" state="up" synchronize="true" type="mn" xmlns:ns1="http://
→˓ns.dataone.org/service/types/v2.0">
<identifier>urn:node:MyMemberNode</identifier>
<name>My Member Node</name>
<description>Test Member Node</description>
<baseURL>https://localhost/mn</baseURL>
<services>
<service available="true" name="MNCore" version="v1"/>
<service available="true" name="MNRead" version="v1"/>
<service available="true" name="MNAuthorization" version="v1"/>
<service available="true" name="MNStorage" version="v1"/>
<service available="true" name="MNReplication" version="v1"/>
<service available="true" name="MNCore" version="v2"/>
<service available="true" name="MNRead" version="v2"/>
<service available="true" name="MNAuthorization" version="v2"/>
<service available="true" name="MNStorage" version="v2"/>
<service available="true" name="MNReplication" version="v2"/>

</services>
<synchronization>
<schedule hour="*" mday="*" min="42" mon="*" sec="0" wday="?" year="*"/>

</synchronization>
<subject>CN=urn:node:MyMemberNode,DC=dataone,DC=org</subject>
<contactSubject>CN=My Name,O=Google,C=US,DC=cilogon,DC=org</contactSubject>

</ns1:node>

This is your Node document. It exposes information about your Node to the DataONE infrastructure. It currently
contains only default values. The Registering the new MN in a DataONE environment section of the installation
includes information on how to customize this document for your node.

Home page

GMN also has a home page with some basic statistics, available at:

https://localhost/mn/home

82 Chapter 4. Contents

DataONE Python Products

Note that the home endpoint is not part of DataONE’s API definition for Member Nodes, and so does not include the
DataONE API version designator (/v1/) in the URL.

Continue with the next installation section if the node is to be registered with DataONE.

Registering the new MN in a DataONE environment

This section assumes that the local setup for Ubuntu or CentOS has been successfully completed.

Completing this section will enable the stand-alone instance of GMN to be joined to the DataONE infrastructure.

Contents:

Obtain and install the server side certificate

GMN authenticates to incoming connections from DataONE clients and other parts of the DataONE infrastructure,
such as CNs by providing a server side certificate during the SSL/TLS handshake.

All nodes that are registered with DataONE must have a valid server side certificate, issued by a publicly trusted CA
such as VeriSign or Thawte.

The trusted certificate is purchased through the same procedure as for any secure web site. Organizations typically
have established procedures for obtaining these certificates or may be using wildcard certificates. The procedure below
assumes that a valid certificate has already been obtained.

Setup the server side certificate and private key

Delete the previously installed non-trusted “snakeoil” certificate:

$ rm /var/local/dataone/certs/server/{server_cert.pem,server_key_nopassword.
→˓pem}

Move the trusted certificate and key to the /var/local/dataone/certs/server directory and
rename them to server_cert.pem and server_key.pem.

If the key is password protected, Apache will prompt for the password each time it’s started. As an
optional step, the password can be removed:

$ cd /var/local/dataone/certs/server
$ sudo openssl rsa -in server_key.pem -out server_key_nopassword.pem
$ sudo chown root:root server_key.pem server_key_nopassword.pem
$ sudo chmod 400 server_key.pem server_key_nopassword.pem

If you wish to retain the password in the key, modify the SSLCertificateKeyFile setting in the
/etc/apache2/sites-available/gmn-ssl.confVirtual Host file to the path of the password
protected key.

Other names and/or locations may also be used. If so, update the SSLCertificateFile and
SSLCertificateKeyFile settings in the gmn-ssl.conf Virtual Host file to match.

If the server certificate is signed by intermedite certificate(s), the issuing CA will have provided the
intermediate certificate chain in addition to the server side certificate. If so, move the intermediate
certificate chain file to the /var/local/dataone/certs/server directory and uncomment the
SSLCertificateChainFile setting for GMN in the gmn-ssl.conf Virtual Host file. As with
the server side certificate and key, the path in gmn-ssl.conf can be adjusted if necessary.

4.3. Generic Member Node (GMN) 83

DataONE Python Products

Install the DataONE client side certificate

In addition to acting as servers in the DataONE infrastructure, Member Nodes also act as clients, initiating connections
to other Nodes. When connecting to other Nodes, Member Nodes authenticate themselves in a process called client
side authentication, in which a client side certificate is provided to the server.

Obtain the client side certificate

Client side certificates for MNs are issued by the DataONE CA. MNs go through a testing phase before being registered
in the DataONE production environment used by the public, so DataONE will first issue a test certificate to your node.
The test certificate is valid only in DataONE’s test environments. When the MN is ready to join the production
environment, DataONE will issue a production certifiate for your node. The certificates are valid for several years and
are linked to your MN via their DNs.

To obtain a client side certificate for testing:

1. Work with DataONE to determine a Node ID on the form, urn:node:NODEID, for your node.

2. Create an account on the DataONE Registration page,

3. Notify DataONE by sending an email to support@dataone.org. In the email, state that you are requesting a
client side certificate for a new MN and include the agreed upon Node ID, on the form urn:node:NODEID.

4. DataONE will create the certificate for you and notify you of its creation with a reply to your email.

5. Follow the link provided in the email, and sign in using the account created or used in the first step, above.

Warning: Anyone who has the private key can act as your Node in the DataONE infrastructure. Keep the
private key safe. Set it to be readable only by root and follow best practices for security to keep root from being
compromised. If your private key becomes compromised, please inform DataONE so that the certificate can be
revoked and a new one generated.

Install the client side certificate

When the signed client side certificate has been received from DataONE, move it and its private key to
the /var/local/dataone/certs/client folder.

Rename the files to client_cert.pem and client_key.pem.

Remove the password from the key:

$ cd /var/local/dataone/certs/client
$ sudo openssl rsa -in client_key.pem -out client_key_nopassword.pem
$ sudo chown root:root client_key.pem client_key_nopassword.pem
$ sudo chmod 400 client_key.pem client_key_nopassword.pem

Other names and/or directories may be used. If so, update CLIENT_CERT_PATH and
CLIENT_CERT_PRIVATE_KEY_PATH in the GMN settings.py file to the new paths.

Install CILogon and DataONE root CA certificates

For a client side certificate to be considered valid by GMN, GMN must trust the CA that signed the client side
certificate. This step sets up the CAs to be trusted.

84 Chapter 4. Contents

https://docs.dataone.org/join_form
mailto:support@dataone.org

DataONE Python Products

Two basic types of client side certificates are used in the DataONE infrastructure. The first type is issued by the
CILogon CA and is used for authenticating users. The second type is issued by the DataONE CA and is used for
authenticating Nodes.

CILogon is the identity provider for DataONE. CILogon provides three LOAs. These instructions set GMN up to
accept all three.

DataONE issues certificates that let Nodes communite securely in the DataONE infrastructure. The DataONE CA root
certificates must be trusted by all Nodes.

The OS typically comes with a complete set of commonly trusted CA root certificates. However, DataONE Nodes
should not accept certificates signed by these, so a separate CA store is used for the CILogon and DataONE root CAs.

Two separate certificate chains are available. One is used for the DataONE production environment and one is used
for all the testing and development environments. Only the DataONE CA differs between the chains.

Create a folder for the CA certificates:

$ sudo mkdir -p /var/local/dataone/certs/ca

Run one of the commands below, depending on which environment the MN is being registered into.

Registering in a testing environment (Staging, Sandbox, Development):

Only run this command when registering the MN in a testing environment
$ sudo curl -o /var/local/dataone/certs/ca/DataONECAChain.crt \
https://repository.dataone.org/software/tools/trunk/ca/DataONETestCAChain.
→˓crt; \
c_rehash /var/local/dataone/certs/ca/

Registering in production:

Only run this command when registering the MN in production
$ sudo curl -o /var/local/dataone/certs/ca/DataONECAChain.crt \
https://repository.dataone.org/software/tools/trunk/ca/DataONECAChain.crt; \
c_rehash /var/local/dataone/certs/ca/

Register the new Member Node with DataONE

A Member Node (MN) integrates itself into DataONE through a process called Node Registration. Registering the
MN allows the Coordinating Nodes (CNs) to synchronize content, index the metadata and resource maps, and replicate
its content to other MNs.

MNs go through a testing phase before being registered in the DataONE production environment used by the public.
This document describes how to register the new MN in a test environment. When the MN is ready to be registered in
the production environment, the same procedure is used.

Registering the MN in a testing environment involves the following steps:

1. Creating a DataONE identity in the environment.

2. Submitting a Node document. The Node document describes the MN and the level at which it will participate
in the DataONE infrastructure.

3. DataONE evaluates the submission. Upon approval, the registration is complete, and the Node is part of the
DataONE infrastructure.

Perform the steps in order, as each step depends on earlier steps.

4.3. Generic Member Node (GMN) 85

DataONE Python Products

Create a DataONE identity

This step must be performed by the person who will be the contact for the new MN. The contact person is often also
the administrator for the MN.

Each DataONE environment has a web-based Identity Manager where DataONE identities are created and maintained.
To create a DataONE identity, you will use the Identity Manager to authenticate with a CILogon-recognized identity,
and then attach your name and contact email. At this point, DataONE will validate the information manually.

To register the administrative contact’s DataONE identity in the target environment, perform the following steps:

1. Navigate to the Identity Manager of the target environment:

Environment Identity Manager URL
Production https://cn.dataone.org/portal
Staging https://cn-stage.test.dataone.org/portal
Sandbox https://cn-sandbox.test.dataone.org/portal
Development https://cn-dev.test.dataone.org/portal

2. Follow the prompts to authenticate against your Identity Provider. If your institution is not listed, you can use a
Google or ProtectNetwork account.

3. Once authenticated and back at the DataONE portal, supply your name and email, and then press Register

4. Record (copy to clipboard) the identity string shown in the ‘Logged in as’ field. This value is taken from the
CILogon certificate issued when you authenticated against your chosen Identity Provider, and is also a DataONE
subject.

5. Paste this value into the contactSubject field of the Node document you plan to submit in the next step.

6. DataONE requires that DataONE subjects that are to be used as contacts for MNs be verified. To verify the
account, send an email to support@dataone.org. In the email, include the identity string obtained in the step
above and request that the account be verified. You do not need to wait for a reply to continue to the next step.

Configure the Member Node information

Most of the values that are set up in this section are described in the Node document section in the architecture
documentation.

The Node document is a set of values that describe a MN or CN, its internet location, and the services it supports.

Modify the following settings:

• NODE_IDENTIFIER: A unique identifier for the node of the form urn:node:NODEID where NODEID is the
node specific identifier. This value MUST NOT change for future implementations of the same node, whereas
the baseURL may change in the future.

NODEID is typically a short name or acronym. As the identifier must be unique, coordinate with
your DataONE developer contact to establish your test and production identifiers. The conventions
for these are urn:node:mnTestNODEID for the development, sandbox and staging environments and
urn:node:NODEID for the production environment. For reference, see the list of current DataONE Nodes.

E.g.: urn:node:USGSCSAS (for production) and urn:node:TestUSGSCSAS (for testing).

• NODE_NAME: A human readable name of the Node. This name can be used as a label in many systems to
represent the node, and thus should be short, but understandable.

E.g.: USGS Core Sciences Clearinghouse

86 Chapter 4. Contents

https://cn.dataone.org/portal
https://cn-stage.test.dataone.org/portal
https://cn-sandbox.test.dataone.org/portal
https://cn-dev.test.dataone.org/portal
mailto:support@dataone.org
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/Types.html#Types.Node
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/Types.html#Types.Node
http://mule1.dataone.org/OperationDocs/membernodes.html

DataONE Python Products

• NODE_DESCRIPTION: Description of a Node, explaining the community it serves and other relevant infor-
mation about the node, such as what content is maintained by this node and any other free style notes.

E.g.: US Geological Survey Core Science Metadata Clearinghouse archives metadata records describing datasets
largely focused on wildlife biology, ecology, environmental science, temperature, geospatial data layers docu-
menting land cover and stewardship (ownership and management), and more.

• NODE_BASEURL: The base URL of the node, indicating the protocol, fully qualified domain name, and path
to the implementing service, excluding the version of the API.

E.g.: https://server.example.edu/app/d1/mn

• NODE_SUBJECT: Specify the subject for this Node (retrieved from the client certificate provided by DataONE)

• NODE_CONTACT_SUBJECT: The appropriate person or group to contact regarding the disposition, manage-
ment, and status of this Member Node. The contactSubject is an X.509 Distinguished Name for a person or
group that can be used to look up current contact details (e.g., name, email address) for the contact in the
DataONE Identity service. DataONE uses the contactSubject to provide notices of interest to DataONE nodes,
including information such as policy changes, maintenance updates, node outage notifications, among other
information useful for administering a node. Each node that is registered with DataONE must provide at least
one contactSubject that has been verified with DataONE.

The contactSubject must be the subject of the DataONE identity that was created in the previous step.

E.g.: CN=My Name,O=Google,C=US,DC=cilogon,DC=org

• NODE_REPLICATE: Set to true if the node is willing to be a replication target, otherwise false.

• DATAONE_ROOT: Select the environment that matches the one that was selected in Create a DataONE identity.

E.g.: https://cn-stage.dataone.org/cn

Submit Member Node information to DataONE

The Member Node information is submitted to DataONE in a Node document. GMN automatically generates the
Node document based on the settings configured in the previous step.

After editing settings.py, check if the Node document is successfully generated:

$ su gmn
$ python /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/
→˓manage.py node view

If the Node document is successfully generated, an XML document will be displayed. For more infor-
mation about this document, refer to https://releases.dataone.org/online/api-documentation-v2.0.1/apis/
Types.html#Types.Node

When the Node document is successfully generated and displayed, register the MN by submitting
the Node document to DataONE. The Node document is automatically submitted to DataONE over a
TLS/SSL connection that has been authenticated with the client side certificate configured in Install the
DataONE client side certificate.

$ python lib/python3.6/site-packages/d1_gmn/manage.py node register

• Check for a message saying that the registration was successful.

After running the script or running an automated registration, the Member Node should email support@dataone.org
to notify of the registration request.

4.3. Generic Member Node (GMN) 87

https://cn-stage.dataone.org/cn
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/Types.html#Types.Node
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/Types.html#Types.Node
mailto:support@dataone.org

DataONE Python Products

DataONE evaluates the submission

DataONE evaluates the submitted Node document and contacts the person listed as contactSubject in the Node doc-
ument by email with the outcome of the approval process. After the node has been approved, the MN is part of the
infrastructure environment in which it has been registered, and the CNs in that environment will start processing the
information on the node.

Select the DataONE Tier

DataONE has defined several tiers, each of which designates a certain level of functionality exposed by the Mem-
ber Node. The tiers enable Member Nodes to implement only the functionality for the level at which they wish to
participate in the DataONE infrastructure.

The tiers are as follows:

Tier 1 Read, public objects Tier 2 Access controlled objects (authentication and authorization)
Tier 3 Write (create, update and delete objects)
Tier 4 Replication target

Each tier implicitly includes all lower numbered tiers. For instance, a Tier 3 Node must implement tiers 1, 2 and 3.

GMN supports all tiers. To select the tier for your Member Node, take the following into account:

• A Tier 1 Node is typically used for exposing existing data to DataONE. As there is no support for manipulating
the data through DataONE interfaces in this tier, GMN cannot be populated with objects while in this tier.
Therefore, GMN should not initially be set to this tier. Instead, set GMN to Tier 3, populate the Node with
objects, and then set the Tier to 1.

• A Tier 2 Node allows the access to objects to be controlled via access control lists (ACLs). Using this Tier
implies the same strategy as for Tier 1.

• A Tier 3 Node allows using DataONE interfaces to set up the objects on the Member Node, for instance by
using the DataONE Command Line Interface or by creating Python scripts or Java programs that are based on
the libraries provided by DataONE. The objects can be set up with storage managed either by GMN itself or
by another, independent server that makes the object data available on the web. Access to the write functions is
restricted by a whitelist.

• A Tier 4 member Node can act as a replication target, which allows the Member Node operator to provide
storage space to DataONE (for storing object replicas).

When you have determined which tier to use, edit settings.py:

$ sudo nano /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/
→˓settings.py

• Set TIER to 1, 2, 3 or 4.

Final configuration and startup

Turn off stand-alone mode

$ sudo nano /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/
→˓settings.py

• Set STAND_ALONE to False.

88 Chapter 4. Contents

DataONE Python Products

Resources

View documentation for Apache2 configuration under Debian GNU/Linux:

$ zless /usr/share/doc/apache2.2-common/README.Debian.gz

Viewing the files involved in the SSL handshake:

openssl rsa -noout -text -in server.key
openssl req -noout -text -in server.csr
openssl rsa -noout -text -in ca.key
openssl x509 -noout -text -in ca.crt

Overview of the SSL handshake:

SSL Handshake

Add DataONE test certificate to system wide trusted CA store

$ sudo -s
$ sudo cp /var/local/dataone/certs/local_ca/ca.crt /usr/share/ca-certificates/dataone-
→˓gmn-test-ca.crt
$ sudo dpkg-reconfigure ca-certificates
$ sudo update-ca-certificates

In the dpkg-reconfigure GUI, enable the dataone-gmn-test-ca.crt.

Integration testing using certificates

Create two test certificates signed by the local CA. We simulate valid and invalid sessions by using “valid” and
“invalid” strings in the Common Names.

$ cd /var/local/dataone/certs/local_ca
$ sudo openssl genrsa -des3 -out test_valid.key 4096
$ sudo openssl genrsa -des3 -out test_invalid.key 4096

Create CSRs:

When prompted for Common Name (CN), type “test_valid” for the certificate signed with the test_valid key and
“test_invalid” for the certificate signed with the test_invalid key.

$ sudo openssl req -new -key test_valid.key -out test_valid.csr
$ sudo openssl req -new -key test_invalid.key -out test_invalid.csr

Sign the CSR with the CA signing key:

$ sudo openssl x509 -req -days 36500 -in test_valid.csr -CA ca.crt -CAkey ca.key -set_
→˓serial 01 -out test_valid.crt
$ sudo openssl x509 -req -days 36500 -in test_invalid.csr -CA ca.crt -CAkey ca.key -
→˓set_serial 01 -out test_invalid.crt

Remove passwords from the private keys:

$ sudo openssl rsa -in test_valid.key -out test_valid.nopassword.key
$ sudo openssl rsa -in test_invalid.key -out test_invalid.nopassword.key

4.3. Generic Member Node (GMN) 89

http://developer.connectopensource.org/download/attachments/34210577/Ssl_handshake_with_two_way_authentication_with_certificates.png

DataONE Python Products

Copy the keys to the integration tests:

$ cp test_valid.nopassword.key /var/local/dataone/gmn_venv_py3/src/tests
$ cp test_invalid.nopassword.key /var/local/dataone/gmn_venv_py3/src/tests

Migrating Existing Member Node to GMN

This section describes how to migrate an existing, operational MN to GMN.

If you are working on a fresh install, start at GMN setup overview.

Because of changes in how later versions of GMN store System Metadata and Science Objects, there is no direct pip
based upgrade path from 1.x. Instead, 3.x is installed side by side with 1.x and an automatic process migrates settings
and contents from v1 to 3.x and switches Apache over to the new version.

The automated migration assumes that GMN v1 was installed with the default settings for filesystem locations and
database settings. If this is not the case, constants in the migration scripts must be updated before the procedure will
work correctly. Contact us for assistance.

The existing v1 instance is not modified by this procedure, so it is possible to roll back to v1 if there are any issues
with the migration or 3.x.

Install GMN 3.x and migrate settings and contents

Prepare pip from PyPI:

$ sudo apt install --yes python-pip; \
sudo pip install --upgrade pip; \
sudo apt remove --yes python-pip;

Prepare dependencies:

$ sudo pip install --upgrade pip virtualenv
$ sudo apt install --yes libffi-dev

Create virtual environment for GMN 3.x:

$ sudo -u gmn virtualenv /var/local/dataone/gmn_venv_py3

Install GMN 3.x from PyPI:

$ sudo -u gmn --set-home /var/local/dataone/gmn_venv_py3/bin/pip install dataone.gmn

Configure GMN 3.x instance and migrate settings from GMN v1:

$ sudo /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/deployment/
→˓migrate_v1_to_v2.sh

Migrate contents from GMN v1:

$ sudo -u gmn /var/local/dataone/gmn_venv_py3/bin/python \
/var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/d1_gmn/manage.py \
migrate_v1_to_v2

Verify successful upgrade:

90 Chapter 4. Contents

DataONE Python Products

• Seen from the user side, the main improvement in GMN v2 is that it adds support for v2 of the DataONE API.
For any clients that continue to access GMN via the v1 API, there should be no apparent difference between v1
and v2. Clients that access GMN via the v2 API gain access to the new v2 functionality, such as Serial IDs.

• A quick way to check if the node is now running GMN 3.x is to open the v2 Node document in a browser, at
https://your.node.edu/mn/v2. An XML document which announces both v1 and v2 services should be displayed.

Roll back to GMN v1

If there are any issues with GMN v2 or the migration procedure, please contact us for assistance. While the issues are
being resolved, the following procedure will roll back to v1.

This procedure should not be performed after any new objects have been added to v2, as they will become unavailable
in v1.

Switch the GMN version served by Apache to v1:

$ sudo a2dissite gmn3-ssl
$ sudo a2ensite gmn-ssl

Disable v2 services for this MN in the CN Node registry:

$ sudo -u gmn /var/local/dataone/gmn/bin/python \
/var/local/dataone/gmn/lib/python3.6/site-packages/gmn/manage.py \
register_node_with_dataone --update

Hosting multiple Member Nodes from the same GMN instance

A single GMN instance can host multiple separate MNs, referred to as “multi-hosting”. The number of MNs hosted
within a GMN instance is limited only by the available hardware.

In a multi-hosting setup, each MN is functionally equivalent to individual MNs hosted on separate servers. They are
individually configured and have separate management commands. Each MN has its own database and Science Object
storage area in the filesystem.

At the same time, by sharing a server and a Python virtual environment, any upgrades or other system maintenance
automatically applies to all the MNs.

Overall, multi-hosting can significantly lower the time required to maintain the services, lower hardware costs, and
lower the complexity of deployments.

A multi-hosting setup works by configuring Apache to alias separate MN BaseURLs to separate WSGI configuration
files. Each WSGI file then invokes GMN using a separate settings file. In turn, each settings file specifies a different
database, Science Object storage area, and log file.

As each MN has its own settings file, the MNs can be configured individually for such things as branding and replica-
tion policies.

In order to be able to specify which MN a management command applies to, separate management commands are set
up as well.

As with MNs hosted on separate servers, each MN needs to have a unique BaseURL. If the BaseURLs use the same
domain name, they can share a single server side certificate and DNS record. E.g.:

https://xyz.node.edu/mn-one
https://xyz.node.edu/mn-two

4.3. Generic Member Node (GMN) 91

https://your.node.edu/mn/v2

DataONE Python Products

Each MN can also have completely unrelated BaseURLs, as long as all the domain names resolve to the same server.
In such as setup, the server can be set up to issue separate server side certificates for each MN, or both MNs can issue
a shared certificate that covers both domain names. E.g.:

https://mn-one.some.domain.edu/mn/
https://mn-two.another.domain.org/some/path/

Example

What follows is a complete example on how to add a second MN to a GMN instance that has already been set up as
described in the standard setup procedure, and is currently exposing a single working MN. After adding the second
MN, there will be no difference to the original MN as seen from the user side.

In this example, we’ll just call the original MN, “a”, and the new MN, “b”. In a real setup, these names would be
selected to reflect the actual MN names.

If the new MN is intended to be joined to a DataONE environment, start by obtaining a client side certificate for the
MN from DataONE. If the MN will be used for local testing only, a self signed certificate can be generated as described
in Local Certificate Authority (CA). Make sure to modify the names of the output files if previously generated files are
still in use. Then install the certificates as described in Install non-trusted client side certificate.

$ cdgmn
$ sudo service apache2 stop

$ mv wsgi.py wsgi_a.py
$ mv settings.py settings_a.py
$ mv manage.py manage_a.py

$ cp wsgi_a.py wsgi_b.py
$ cp settings_a.py settings_b.py
$ cp manage_a.py manage_b.py

$ editor wsgi_a.py

* Edit: d1_gmn.settings -> d1_gmn.settings_a

$ editor manage.py

* Edit: d1_gmn.settings -> d1_gmn.settings_a

$ editor wsgi_b.py

* Edit: d1_gmn.settings -> d1_gmn.settings_b

$ editor manage.py

* Edit: d1_gmn.settings -> d1_gmn.settings_b

$ editor settings_b.py

* Edit the settings as if setting up a regular new MN on a separate server

* In addition:

* Change the following settings so that they’re different from the values

* used by the original MN:

* NODE_BASEURL, DATABASE.NAME, LOG_PATH, OBJECT_STORE_PATH

* For this example, we’ll assume that we just added "_b" to the values

Create and initialize a database for the new MN:

$ su postgres -c 'createdb -E UTF8 gmn2_b'
$./manage_b.py migrate --run-syncdb

92 Chapter 4. Contents

DataONE Python Products

Configure Apache:

$ sudo -e /etc/apache2/sites-enabled/gmn3-ssl.conf

Duplicate and modify WSGIScriptAlias and WSGIDaemonProcess as follows. This pattern is used when the MNs use
the same domain main in the BaseURL. It leaves the original MN available under the same BaseURL as before, and
exposes the new MN under /mn_b/.

WSGIScriptAlias /mn ${gmn_root}/wsgi_a.py
WSGIScriptAlias /mn_b ${gmn_root}/wsgi_b.py
WSGIDaemonProcess gmn_a user=gmn processes=2 threads=25
WSGIDaemonProcess gmn_b user=gmn processes=2 threads=25

Add a new section to apply separate process groups to each MN (without this, both MNs will randomly be served from
both BaseURLs):

<Location /mn>
WSGIProcessGroup gmn_a
SSLOptions +ExportCertData

</Location>
<Location /mn_b>

WSGIProcessGroup gmn_b
SSLOptions +ExportCertData

</Location>

Create crontab entries for the async jobs for the new MN:

$ crontab -e

Duplicate the two crontab entries, then change the first two from manage.py to manage_a.py and the last two to
manage_b.py. Similarly append _a and _b to the log filenames.

Then all that remains is to start Apache again to make the new MN available for use.

$ sudo service apache2 start

Management commands for the original MN are now launched via manage_a.py, and via manage_b.py for the new
MN. E.g., to register the new MN in a DataONE environment, use manage_b.py node register.

Depending on how backups are performed on the server, the new database and the Science Object storage area for the
new MN may have to be added to the procedures.

Other administrative procedures, such as OS, GMN and DataONE Python stack upgrades, likely remain unchanged.

Troubleshooting

Psycopg2 gives “can’t adapt” errors

The version of Psycopg2 that was installed by default was not compatible.

Try uninstalling the default version and installing a specific version. The version referenced below had been found to
work well with Postgres 8.4.10.

$ sudo apt-get remove python-psycopg2
$ mkdir ~/install
$ cd ~/install
$ wget http://initd.org/psycopg/tarballs/PSYCOPG-2-4/psycopg2-2.4.2.tar.gz

(continues on next page)

4.3. Generic Member Node (GMN) 93

DataONE Python Products

(continued from previous page)

$ tar xzf psycopg2-2.4.2.tar.gz
$ cd psycopg2-2.4.2
$ sudo python setup.py install

Another option is to try to install Psycopg2 via easy_install:

$ sudo easy_install -m psycopg2

To remove a version of Psycopg2 that was installed with easy_install:

$ sudo rm -rf /usr/lib/python3.6/dist-packages/psycopg2

SSLError(SSLError(1, ‘[SSL: TLSV1_ALERT_UNKNOWN_CA] tlsv1 alert unknown ca (_ssl.c:2273)’),

SSL/TLS Troubleshooting

Commonly seen OpenSSL SSL/TLS connection errors and X.509 client or server side certificate configuration errors
with possible causes and solutions.

Error Code 1

SSLError(SSLError(1, ‘[SSL: TLSV1_ALERT_UNKNOWN_CA] tlsv1 alert unknown
ca (_ssl.c:2273)’), ssl.SSLError: [Errno 1] _ssl.c:510: error:14094418:SSL rou-
tines:SSL3_READ_BYTES:tlsv1 alert unknown ca SSLError(SSLError(“bad handshake: Error([(‘SSL
routines’, ‘ssl3_read_bytes’, ‘tlsv1 alert unknown ca’)],)”,),)

Cause:

• Client connected using a cert that was signed by a CA unknown to the server

• Apache was unable to find the root CA cert that was used for signing the client side cert in its local store of
trusted root CA certs

• Apache was also unable to find intermediate certs that could be used for creating a chain from the client side
cert to one of the root CA certs

Check:

• Check that the CA used for signing the client side cert is set up to be trusted by Apache

• The signing CA should either be in a folder pointed to by SSLCACertificatePath or in a cert bundle file pointed
to by SSLCACertificateFile

– Typical location of these settings is gmn3-ssl.conf

• For client side certs signed by DataONE, point SSLCACertificateFile to local copy of cert bundle:

– Test environments: https://repository.dataone.org/software/tools/trunk/ca/DataONETestCAChain.crt

– Production: https://repository.dataone.org/software/tools/trunk/ca/DataONECAChain.crt

• For self signed client side certs, copy the signing CA cert to the directory pointed to by SSLCACertificatePath
then run the c_rehash command in that directory.

• If the signing CA cert is in the right location, but seems to be ignored, check that the symbolic links containing
hash values for the CA certs are present. If necessary, create them with the c_rehash command

• If any intermediate certs are required in order to connect the client side cert with a root CA cert, check that they
are present. They should be installed just like root CA certs

94 Chapter 4. Contents

https://repository.dataone.org/software/tools/trunk/ca/DataONETestCAChain.crt
https://repository.dataone.org/software/tools/trunk/ca/DataONECAChain.crt

DataONE Python Products

• If client is connecting to a DataONE environment, check that the connection is to the env for which the client
side cert was issued

– DataONE uses urn_node_<NAME> for production certs and urn_node_mnTest<NAME> for test certs.
E.g., in settings.py:

– DATAONE_ROOT = d1_common.const.URL_DATAONE_ROOT -> CLIENT_CERT_PATH =
‘urn_node_<NAME>’

– DATAONE_ROOT = ‘https://cn-stage.test.dataone.org/cn’ -> CLIENT_CERT_PATH =
‘urn_node_mnTest<NAME>’

• Check that the root CA certs are valid and PEM encoded

– View the cert files with openssl x509 -in <cert_file.pem> -text -noout

Certificate verify failed

SSLError: (“bad handshake: Error([(‘SSL routines’, ‘ssl3_get_server_certificate’, ‘certificate ver-
ify failed’)],)”, (SSLError(1, ‘[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
(_ssl.c:590)’),))

Cause:

• Client received a certificate that the client was unable to validate

Check:

• Check that the server side cert was signed by a CA known to the client and has not expired

• Check that the system clock on the client system is correct

Operation timed out

ssl.SSLError: (‘The write operation timed out’,) ssl.SSLError: (‘The read operation timed out’,) SSLEr-
ror: _ssl.c:495: The handshake operation timed out

Cause:

• Client timed out while waiting for response from server

Check:

• Increase the timeout on the client

• Consider using streaming HTTP requests and responses

GMN Setup Background Information

PyPI

GMN is distributed via PyPI, the Python Package Index.

4.3. Generic Member Node (GMN) 95

http://pypi.python.org

DataONE Python Products

bashrc

The gmn distribution includes a .bashrc file that contains various convenient settings and aliases for the gmn user.
Installing the .bashrc file is optional but highly recommended, as it provides a standardized environment for adminis-
trators.

A brief message outlining the available settings and aliases will be displayed on each login.

Apache

The mod_ssl module handles TLS/SSL connections for GMN and validates client side certificates. It is included in the
apache2-common package.

The mod_wsgi module enables Apache to communicate with Django and GMN.

Postgres

GMN uses Postgres Peer authentication, which is default in Ubuntu.

With Peer authentication, a process belonging to a given user can access Postgres as long as a corresponding username
has been set up in Postgres with the createuser command.

As part of the GMN install, an empty database is created in Postgres with the createdb command. This database is
owned by the postgres user and Peer authenticated users have permission to create tables in it.

GMN is configured to use this database via the DATABASES/NAME setting in settings.py. Before starting GMN,
a Django management command that creates the tables that are required by GMN is run as the gmn user, which causes
the gmn user to become the owner of the tables.

Asynchronous processing

CNs may send various messages to MNs. These include replication requests and System Metadata update notifications.
Such requests are queued by GMN and handled asynchronously.

The asynchronous processes are implemented as Django management commands that are launched at regular intervals
by cron. The management commands examine the queues and process the requests.

The asynchronous processes connect to CNs and other MNs on behalf of your GMN instance. These connections are
made over TLS/SSL and use the client side certificate stored in /var/local/dataone/certs/client.

Authentication and authorization

Authentication and authorization in DataONE is based on X.509 (SSL) certificates.

GMN authenticates to incoming connections from DataONE clients and other parts of the DataONE infrastructure,
such as CNs by providing a server side certificate during the SSL/TLS handshake.

By default, a stand-alone instance of GMN uses a non-trusted, self-signed, “snakeoil” server side certificate. This
defers the purchase of a publicly trusted certificate from a 3rd party CA such as VeriSign or Thawte until the stand-
alone instance is registered with DataONE.

A stand-alone instance that is not going to be registered with DataONE can use the non-trusted certificate indefinitely.
Such a certificate is as secure as a publicly trusted certificate when used locally.

96 Chapter 4. Contents

DataONE Python Products

In addition to acting as servers in the DataONE infrastructure, Member Nodes also act as clients, initiating connections
to other Nodes. When connecting to other Nodes, Member Nodes authenticate themselves in a process called client
side authentication, in which a client side certificate is provided over an LTS/SSL connection.

Nodes that are registered with DataONE will only trust Member Node connections where a client side sertificate issued
by the DataONE CA is provided. However, a stand-alone instance of GMN will not connect to registered Member
Nodes, so a non-trusted client side certificate can be used instead.

Misc

GMN translates incoming date-times to UTC and provides outgoing date-times in UTC. Because of this, it is conve-
nient to run the server in UTC, so that server related timestamps, such as the ones in logs, match up with timestamps
stored in the GMN database and provided in DataONE REST API responses.

4.3.2 Authentication and authorization

DataONE specifies a security model for Member Nodes. The model covers most aspects of how clients authenticate
and which content they are authorized for. Some aspects are left open for Member Nodes to implement as best fits
their requirements.

This section outlines the main aspects of how authentication and authorization is implemented in GMN and how to
configure GMN and clients. In-depth coverage of these topics is provided in the DataONE architecture documentation.

Authentication

In DataONE, authentication is the process of confirming the identity claimed by a person or system that connects to a
node in order to call the node’s DataONE REST API methods.

A person or system can connect to a node without claiming an identity. This is done by connecting via HTTPS (or
HTTP for Tier 1 nodes) without providing a X.509 (SSL) client side certificate. In this case, the connection is granted
access only to publicly available APIs and objects.

To claim an identity, the person or system connects with a client side certificate. The certificate must be issued by a CA
that is trusted by the node. A DataONE compliant serialization of the certificate DN becomes the primary DataONE
subject. The certificate can also contain an X.509 v3 extension that hold additional DataONE subjects in the form of
equivalent identities and group memberships.

When a node first receives an incoming connection with a client side certificate, it does basic validation of the certificate
itself. This includes checking that the certificate was issued by a trusted CA, that it has not expired, has not been
revoked and has not been tampered with. After the certificate has passed these tests, the node extracts the primary
subject and any other subjects from the certificate. These become the authenticated subjects for the connection and
authentication is complete.

GMN uses Apache for performing the basic validation of the certificate. If a certificate is provided but is invalid,
Apache will return an error to the client, indicating why the certificate failed validation and will then terminate the
connection.

Authorization

In DataONE, authorization is the process of confirming that an authenticated subject has access to a DataONE REST
API method or object. Authorization happens each time a REST API call is made. When the call is made, the node
will look at the list of authenticated subjects that is associated with the connection through which the call was made. If
the list of authenticated subjects does not include a subject to which access to the REST API method has been granted,
authorization is denied and GMN returns a 401 NotAuthorized exception to the client.

4.3. Generic Member Node (GMN) 97

https://releases.dataone.org/online/api-documentation-v2.0.1/index.html

DataONE Python Products

Permissions for create, update and delete

DataONE does not specify how Member Nodes should control access to the APIs that allow users to create, update
and delete contents on the node. GMN controls the access to these APIs with a whitelist. If a subject that is not in
the whitelist attempts to call, for instance, MNStorage.create(), GMN will return a DataONE exception such as
this (formatted for readability):

Exception: NotAuthorized
errorCode: 401
detailCode: 0
description:

Access allowed only for subjects with Create/Update/Delete permission.
Active subjects:
authenticatedUser (equivalent),
public (equivalent),
CN=First Last,O=Google,C=US,DC=cilogon,DC=org (primary)

This means that the connection was made with a certificate in which the subject was CN=First Last,O=Google,
C=US,DC=cilogon,DC=org and that this subject was not in GMNs whitelist for create, update and delete.

To create a whitelist with this subject, first create a file, for instance, whitelist.txt. The most convenient location
for this file is in the gmn folder:

sudo -Hu gmn bash -c '
cd /var/local/dataone/gmn_venv_py3/lib/python3.6/site-packages/gmn
nano whitelist.txt

'

In this file, add a line with an exact copy of the subject string marked as primary in the NotAuthorized exception
(CN=First Last,O=Google,C=US,DC=cilogon,DC=org in this case).

Blank lines and lines starting with “#” are ignored in the whitelist file, allowing comments. The remaining lines must
each contain a separate subject.

Then, add the entries in the whitelist text file to GMN’s database with the following command:

$ python manage.py set_whitelist whitelist.txt

Any existing subjects in the database are cleared before adding the subjects from the whitelist file. So subjects can be
added or removed from the whitelist by adding or removing them in the file and then synchronizing with the database
by running the command above.

Creating authenticated connections to your Node

To create an authenticated connection to your Node, you must connect over HTTPS and provide a client side certificate.
For a stand-alone node, only the local CA is trusted by default. So only certificates issued by this CA can be used. If
the GMN instance is joined to DataONE, it is set up to also trust certificates issued by CILogon and DataONE.

In addition, the certificate must be for a subject that has the rights required for performing the operation(s) the client
intends to perform after connecting. For instance, GMN requires that the subject used in connections that create
content on the Node validate against an internal whitelist.

For automated tasks, certificates issued by the local CA are preferred. DataONE does not issue certificates for clients,
so cannot be used for this purpose and certificates issued by CILogon are secured by having a time limit of 18 hours,
making them unsuitable for automated tasks.

When running as a regular user, the local CA must be used for a stand-alone instance. The local CA can also be used
for a public instance but CILogon is a more secure choice due to the 18 hour expiration time.

98 Chapter 4. Contents

DataONE Python Products

Authenticating without a certificate

In a stand-alone testing environment, where network access to the GMN instance is strictly limited, it is possible
to simply add public to the whitelist for create, update and delete. Because the public subject is assigned to all
connections, this allows access to create, update and delete objects on the node without any authentication.

Thus, this mode allows modifying node contents when connecting entirely without a certificate. It also lets GMN be
set up for access over regular HTTP.

Authenticating with any trusted certificate

Connections that are made with any certificate that is trusted by GMN are assigned the authenticatedUser
subject. So, adding this subject to the whitelist for create, update and delete enables anyone that connects with a
trusted certificate to alter content on the Node. This is highly insecure if the Node is set up to trust CILogon, as anyone
can obtain a CILogon certificate through OpenID. However, it may be useful if the node exposes only public objects
and so, does not need to trust CILogon.

4.3.3 Using GMN

After GMN has been set up according the setup instructions, it exposes the complete REST interface that DataONE
has defined for Member Nodes. Currently, the easiest way to interact with GMN is to use the DataONE Command
Line Client (CLI). The CLI is installed automatically with GMN and can be started by typing “dataone”. The CLI can
also be scripted to perform tasks such as bulk object creations to populate an instance of GMN with science data.

See Test the installation on Ubuntu, Test the installation on CentOS and the DataONE Command Line Interface (CLI)
documentation for more information about how to use the CLI.

If more comprehensive access to the Node is required, DataONE provides libraries in Java and Python that simplify
the process of interacting with DataONE Member Nodes and Coordinating Nodes. The libraries can be used as
foundations for custom applications that use the DataONE infrastructure.

Contents:

General

Populating your new Node

The DataONE Client Library for Python includes an example on how to iterate over a set of files, create data packages
(resource maps) for them, and upload them to a Member Node. DataONE provides similar libraries for Java.

The CLI can also be scripted to perform tasks such as bulk object creations to populate a MN with Science Data.

Vendor specific extensions

GMN implements a set of extensions that enhance the functionality of GMN. Most of these are designed to help with
debugging and profiling and they are described in another section.

Remote URL

The Remote URL vendor specific extension enables GMN to be used for exposing science data that is already available
through another web based service without having to create another copy of that data.

4.3. Generic Member Node (GMN) 99

http://pythonhosted.org/dataone.cli
http://pythonhosted.org/dataone.cli

DataONE Python Products

In the regular MNStorage.create() and MNStorage.update() REST calls, the bytes of the science objects
are provided, and the MN manages the storage of the objects. When using the Remote URL extension, the bytes of the
objects are not provided and instead, a HTTP or HTTPS URL to the original location of the data is provided. GMN
then manages all aspects of exposing the science data except for the actual storage of the bytes of the exposed object.

When the object is downloaded from GMN, GMN streams the object from its original location in the background.

This extension is activated by adding an HTTP header to the REST call for MNStorage.create() and
MNStorage.update(). The name of the header is VENDOR_GMN_REMOTE_URL and the value is the HTTP
or HTTPS URL that references the object in the remote location. When this header is added, the section of the POST
body that contains the object bytes is ignored, but it must still be included to form a valid REST call. It is typically set
to contain a zero byte object.

4.3.4 Bulk Import

Copy from a running MN:

• Science objects

• Permissions

• Subjects

• Event logs

This function can be used for setting up a new instance of GMN to take over for an existing MN. The import has been
tested with other versions of GMN but should also work with other node stacks.

This command can be run before the new GMN instance has been set up to run as a web service, so the procedure does
not require two web servers to run at the same time.

The new GMN instance can be installed on the same server as the source MN or on a different server.

When replacing an older GMN instance by installing a new instance on the same server, the general procedure is:

• Install the new GMN instance using the regular install procedure, with the following exceptions:

– Install the new GMN instance to a different virtualenv by using a different virtualenv directory name for
the new instance.

– Skip all Apache related steps.

– Skip all certificate related steps.

– Use a separate database for the new instance by modifying the database name in settings.py and using the
new name when initializing the database.

• Manually copy individual settings from settings.py / settings_site.py of the old instance to settings.py of the new
instance. The new instance will be using the same settings as the old one, including client side certificate paths
and science object storage root.

• To make sure that all the settings were correctly copied from the old instance, Generate a Node document in the
new instance and compare it with the version registered in the DataONE environment for the old instance.

$ manage.py node view

• If a certificate is specified with the –cert-pub and (optionally) –cert-key command line switches, GMN will
connect to the source MN using that certificate. Else, GMN will connect using its client side certificate, if one
has been set up via CLIENT_CERT_PATH and CLIENT_CERT_PRIVATE_KEY_PATH in settings.py. Else,
GMN connects to the source MN without using a certificate.

100 Chapter 4. Contents

DataONE Python Products

The –public switch causes GMN to ignore any available certificates and connect as the public user. This is useful if
the source MN has only public objects and a certificate that would be accepted by the source MN is not available.

After the certificate provided by GMN is accepted by the source MN, GMN is authenticated on the source MN for the
subject(s) contained in the certificate. If no certificate was provided, only objects and APIs that are available to the
public user are accessible

The importer depends on the source MN listObjects() API being accessible to one or more of the authenticated subjects,
or to the public subject if no certificate was provided. Also, for MNs that filter results from listObjects(), only objects
that are both returned by listObjects() and are readable by one or more of the authenticated subjects(s) can be imported.

If the source MN is a GMN instance, PUBLIC_OBJECT_LIST in its settings.py controls access to listObjects(). For
regular authenticated subjects, results returned by listObjects() are filtered to include only objects for which one or
more of the subjects have read or access or better. Subjects that are whitelisted for create, update and delete access in
GMN, and subjects authenticated as Coordinating Nodes, have unfiltered access to listObjects(). See settings.py for
more information.

Member Nodes keep an event log, where operations on objects, such as reads, are stored together with associated
details. After completed object import, the importer will attempt to import the events for all successfully imported
objects. For event logs, getLogRecords() provides functionality equivalent to what listObjects provides for objects,
with the same access control related restrictions.

If the source MN is a GMN instance, PUBLIC_LOG_RECORDS in settings.py controls access to getLogRecords()
and is equivalent to PUBLIC_OBJECT_LIST.

• Start the import. Since the new instance has been set up to use the same object storage location as the old
instance, the importer will automatically detect that the object bytes are already present on disk and skip the
get() calls for the objects.

$ manage.py import

• Temporarily start the new MN with connect to it and check that all data is showing as expected.

$ manage.py runserver

• Stop the source MN by stopping Apache.

• Modify the VirtualHost file for the source MN, e.g., /etc/apache2/sites-available/gmn2-ssl.conf, to point to the
new instance, e.g., by changing gmn_venv to the new virtualenv location.

• Start the new instance by starting Apache.

• From the point of view of the CNs and other nodes in the environment, the node will not have changed, as it
will be serving the same objects as before, so no further processing or synchronization is required.

If the new instance is set up on a different server, extra steps likely to be required include:

• Modify the BaseURL in settings.py

• Update the Node registration

$ manage.py node update

Notes:

• Any replica requests that have been accepted but not yet processed by the source MN will not be completed.
However, requests expire and are automatically reissued by the CN after a certain amount of time, so this should
be handled gracefully by the system.

• Any changes on the source MN that occur during the import may or may not be included in the import. To avoid
issues such as lost objects, events and system metadata updates, it may be necessary to restrict access to the
source MN during the transition.

4.3. Generic Member Node (GMN) 101

DataONE Python Products

4.3.5 Maintenance

Notes on maintaining a GMN instance.

Upgrading and updating GMN

As we are often improving stability and performance, as well as adding features to GMN and the DataONE soft-
ware stack, we recommend that GMN nodes are regularly updated to the latest release. Updating GMN causes the
underlying software stack to be updated as well.

GMN is currently in its 3rd major revision, designated by 3.x.x version numbers. Within 3.x.x versions, automated
updates are provided, allowing the MN administrator to update to the latest release by running a few simple commands.

Nodes on the earlier GMN 1.x.x and 2.x.x versions require a full upgrade. Upgrades are more complex than updates,
and are performed manually by a DataONE developer.

Finding your GMN version

To check which version you are running, enter GMN’s Home page. The Home page is located at BaseURL/home.
For instance, if your BaseURL is https://my.node.org/mn, your home page is at https://my.node.
org/mn/home.

Based on your version number, see the applicable section below.

Upgrading GMN 1.x.x and 2.x.x to latest release

Note: This method is applicable only for nodes running the earlier GMN 1.x.x and 2.x.x versions. For nodes running
GMN 3.x.x, see Updating GMN 3.x.x to the latest release.

Due to the complexity of upgrading from earlier GMN 1.x.x and 2.x.x versions, one of our developers, Roger Dahl,
is available to perform the upgrade via an ssh connection directly on the GMN server. In order to accomplish this, it
is preferable if an account can be set up on the GMN server with public key based authentication. The public key is
available at:

https://repository.dataone.org/documents/Management/Users/dahl/sshpublickey/

• The account will need “sudo” access

• The account name can be selected according to the organization’s policies. If no specific policies are in place,
“dahl” can be used

Opening temporary ssh access to the GMN server

Often, ssh access to the GMN server is not available from external networks. For use in such cases, DataONE provides
a simple service that allows the MN administrator to open temporary ssh access directly to the GMN server by running
the following command from a shell on the GMN server:

$ sudo ssh -p 46579 -vNTR 46578:localhost:22 d1r@73.228.47.109

• Password: data!one#

• Press Ctrl-C to terminate access

102 Chapter 4. Contents

https://repository.dataone.org/documents/Management/Users/dahl/sshpublickey/

DataONE Python Products

This opens a temporary secure reverse tunnel that allows access from a single IP address, belonging to the developer.
Access remains available until the command is stopped by pressing Ctrl-C. This also immediately terminates any
active ssh connections.

Typically, no modifications, such as opening firewalls, are required in order to establish the reverse tunnel. However,
depending on the organization’s security policies, the MN administrator may require approval from IT staff.

Note that we are able to publish the password here, as connecting to the service by itself only allows a second reverse
connection to be established. The second connection is restricted by IP address, encrypted and secured by an RSA
key.

Updating GMN 3.x.x to the latest release

Note: This update method is applicable only for nodes already running earlier versions of GMN 3.x.x. For nodes
running earlier versions of GMN, see Upgrading GMN 1.x.x and 2.x.x to latest release.

Log into the GMN server and perform the following commands:

sudo -Hu gmn bash -c '
pip install --upgrade dataone.gmn
manage.py migrate

'

sudo -H bash -c '
sudo service apache2 restart

'

Updating the Node document

Note: If these paths are not correct for the version of GMN currently running on your node, please upgrade to the
latest release first.

The Node document contains information specific to a Node, such as the Member Node description and contact
information.

Make the desired updates to the Node information by modifying the GMN settings.py file.

Publish the updated Node document:

sudo -Hu gmn bash -c '
manage.py node update

'

4.3.6 Optimizing GMN performance

Postgres database

Increasing the memory available to Postgres for such things as sorting can dramatically include performance, as
Postgres will use the disk as temporary storage if there is not enough memory. In Ubuntu 18.04 with Postgres 10, the
default is 4MB. To increase the value, edit work work_mem in postgresql.conf. E.g.,:

4.3. Generic Member Node (GMN) 103

DataONE Python Products

sudo editor /etc/postgresql/10/main/postgresql.conf

• Increase work_mem from 4MB to 32MB.

The MNRead.listObjects() and MNCore.getLogRecords() API issue ordered, sliced and filtered select statements.
The base tables for these operations should be clustered (physically ordered) by the default sort order. Unfortunately,
Django does not do this automatically. To cluster the base table for MNRead.listObjects():

Find the names of the indexes, by running the GMN manage.py as the gmn user:

$ sudo -Hu gmn
$./manage.py dbshell
> \d app_scienceobject

Search for the combined index name (modified_timestamp, id)

Specify clustering on the index:

> cluster app_scienceobject using <index name, e.g., app_science_modifie_76ef91_idx>;

To cluster the base table for MNCore.getLogRecords(), repeat the procedure with app_eventlog and
(timestamp, id).

When successfully completed, \d app_scienceobject / app_eventlog will display the CLUSTERED
keyword next to the clustered indexes.

Notes:

• Clustering on a large database can take a long time, and queries are not accepted during the process.

• Postgres will not automatically keep the table clustered. Instead, the table must be clustered whenever sufficient
changes have been accumulated.

• To keep the table clustered for longer, adjust the fill factor.

• Use cron to schedule automatic clustering. Note that the tables are locked while the clustering operation runs.

• Search the web for Postgres “analyze” and “vacuum” for more information.

Profiling

When GMN is in debug mode (DEBUG is set to True in the GMN settings.py file), the following profiling functionality
is available.

SQL query profiling

All REST calls accept a vendor specific extensions called VENDOR_PROFILE_SQL. When this parameter is provided,
the normal output from the call is suppressed and a text document containing SQL query profiling information is
returned instead. The document lists all the SQL queries that were used for filling the request together with execution
times.

Note: If a REST call returns an exception, the exception is also suppressed.

104 Chapter 4. Contents

DataONE Python Products

Python profiling

All REST calls accept a vendor specific extensions called VENDOR_PROFILE_PYTHON. When this parameter
is provided, the normal output from the call is suppressed and a text document containing Python script profiling
information is returned instead. The document includes information such as the name and location, number of calls
and cumulative execution times for the longest running functions.

Note: Only the view functions are covered. In particular, response_handler, where the SQL queries are executed, is
not covered.

4.3.7 Implementation

Implementation notes intended for developers.

Contents:

Implementation

DataONE GMN is a web app implemented in Python based on the Django web app framework. Django is a WSGI
compliant application. It is served by Apache via mod_wsgi. The DataONE infrastructure uses SSL and X.509 certifi-
cates for security and certificate validation is handled for GMN by mod_ssl.

OS

DataONE Common

Apache

DataONE Client

GMN

mod_wsgi mod_ssl

Django GMN access control

4.3. Generic Member Node (GMN) 105

DataONE Python Products

Locking and concurrency

Locking and concurrency in GMN is based on Django’s implementation of implicit database transactions, enabled by
setting ATOMIC_REQUESTS to True in the database connection setup.

Django wraps each HTTP request in an implicit transaction. The transaction is rolled back if the request does not com-
plete successfully. Upon a successfully completed request, the transaction is committed, thus making all modifications
that the request made to the database visible simultaneously, bringing the database directly from one valid state to the
next.

Transactions are also used in read-only requests as they hide any transitions between valid states that may happen
during the processing of multiple database transactions during a single request.

Testing and debugging

In production, GMN is always served over SSL with an optional client side certificate. For testing and debugging,
GMN must be served over HTTP because the Django development server does not support HTTPS. In that scenario,
it is not possible for the client to provide a certificate.

106 Chapter 4. Contents

DataONE Python Products

production

HTTPS

Apache

certificate no certificate

GMN

debugging

HTTP

Django dev server

simulated certificate

integration tests browser

Figure: The various scenarios that GMN can be served under.

• Green: Production with client side certificate. Apache will reject the connection if the certificate is not valid,
and GMN will not see the connection attempt. The certificate must be signed by CILogon.

• Blue: Production without a client side certificate. Apache accepts the connection. GMN falls back to the default
Public session.

• Red: Testing and debugging with simulated certificate. This path is used by the integration tests. Debugging
is supported. Because HTTP is used, no certificate can be provided. Instead, a valid certificate is simulated by
using a Vendor Specific Extension to pass in a session.

Because Apache rejects connections with invalid certificates in production, there is no need to simulate a sce-
nario where an invalid certificate is passed to GMN.

This path is only available when GMN is running in debug mode.

• Orange: Testing and debugging without a certificate. Same as the testing path with simulated certificate except

4.3. Generic Member Node (GMN) 107

DataONE Python Products

that it simulates a connection without a session by not providing a session in the Vendor Specific Extension.
This requires GMN to fall back to the default Public session.

• From the point of view of GMN, there are 3 types of connections:

1. Connection with valid certificate

2. Connection without certificate (accepted, fall back to Public)

3. Connection with simulated certificate (accepted only in debug mode)

Integration tests against production instance

<TODO: Add instructions on how to run the integration tests with a valid certificate signed by CILogon>

Integration tests against debug instance

The integration tests are by deafult set up to assume that the GMN instance they connect to is in debug mode and they
should all pass without any additional configuration.

Browser testing against production instance

In some cases, it’s convenient to test GMN via a browser though only the GET based REST calls are conveniently
reproducible from a browser. These instructions focus on Firefox.

GMN will authenticate with a server side certificate signed by CILogon. Set the browser up to accept this certificate
by adding the CILogon CA certificates to the browser’s trusted CA store:

• Open the Certificate Manager (Edit | Preferences | Advanced | Encryption | View Certificates)

• Import new CA (Authorities | Import)

• Browse to /var/local/dataone/ca/cilogon-basic.pem

• Select “Trust this CA to identify web sites.”

Repeat with the cilogon-openid.pem and cilogon-silver.pem certificates.

The functionality accessible by the Public principal through GET based REST calls can now be tested.

To test functionality accessible only to authenticated users, the browser must be set up to provide a valid certificate
signed by CILogon.

<TODO: Add instructions on how to obtain a certificate from CILogon and install it in Firefox>

Browser testing against debug instance

In debug mode, GMN supports providing a simulated certificate via vendor specific extensions. In this mode, the
session object that a certificate would normally contain is passed to GMN via a custom HTTP header. To enable
Firefox to provide the header, install a Firefox extension such as Modify Headers.

<TODO: Add instructions on how to use the Modify Headers extension to add a simulated certificate>

108 Chapter 4. Contents

http://www.mozilla.com/firefox
https://addons.mozilla.org/en-us/firefox/addon/modify-headers/

DataONE Python Products

Uploading test objects

The create() call accept a vendor specific extensions called VENDOR_TEST_OBJECT. When this parameter is pro-
vided, the system metadata for the object is accepted without any information being added or overwritten by the
MN.

Testing the replication processing

The DataONE Test Utilities for Python includes the Replication Tester (RepTest), a Python app that performs basic
testing of the replication functionality of a Tier 4 MN. This describes how to set GMN up for testing with RepTest.

RepTest takes on the roles of the CN and another MN. So, for the test to be successful, GMN must be set up to accept
RepTest both as a CN and another MN during the transfer of the object being replicated. GMN must also be set up to
call back to RepTest during replication instead of to the root CN.

Without certificates

The simplest way to test the replication functionality is to turn off access control for objects and the replication API
methods in GMN. Of course, this means that the access control is not tested.

<TODO: Describe how to set this up>

Changing root CN

RepTest needs to be set up as the root CN for the GMN instance being tested. This is done by modifying
DATAONE_ROOT in settings.py to point to RepTest. E.g., if RepTest is running on the same machine as GMN:

DATAONE_ROOT = 'http://localhost:8181'

The port and network interface on which RepTest listens is configurable.

Background

The first time that GMN handles a request after startup, it will call CNCore.listNodes() on the root CN in the
environment in which it is set up to find information about the other nodes in the environment. GMN will perform this
call at even intervals to refresh its cache of the information.

When RepTest is set to be the root CN, RepTest receives this initial call. RepTest responds with a customized list of
nodes holding only a CN and a MN. These nodes both point back to RepTest, thus setting the GMN instance up to
accept calls from RepTest as if they originate from a CN. In addition, the replication related calls that GMN makes to
the CN and MN replication counterpart become directed to RepTest, which uses them for orchestrating the replication
process and checking that the MN is performing the replication correctly.

If GMN is not set up to use RepTest as a root CN, RepTest will abort testing with a authentication related exception.
For instance, if RepTest calls MNRead.getReplica(), the exception may look like the following:

d1_common.types.exceptions.NotAuthorized: name: NotAuthorized
errorCode: 401
detailCode: 0
description:

A CN has not authorized the target MN, "public" to create a replica of "anterior1.
→˓jpg".

(continues on next page)

4.3. Generic Member Node (GMN) 109

DataONE Python Products

(continued from previous page)

Exception received from the CN:
name: NotAuthorized
errorCode: 401
detailCode: 4871
description: There is no Member Node registered with a node subject matching public

nodeId: urn:node:mnDevGMN

This somewhat confusing error message is a NotAuthorized exception from GMN with a description field that contains
the exception that was received from the CN which, in this case, is also a NotAuthorized exception.

The exception is raised because GMN called a real CN to get authorization for a call to MNRead.getReplica().
Since the replication was initiated by RepTest and not the real CN, the real CN rejects the request.

4.4 Indices and tables

• genindex

• modindex

• search

4.5 DataONE Common Library for Python

See DataONE Python Products for an overview of the DataONE libraries and other products implemented in Python.

The DataONE Common Library for Python is a component of the DataONE Investigator Toolkit (ITK). It forms
the foundation on which higher level components in the DataONE Python stack are built. It provides functionality
commonly needed by clients, servers and other applications that interact with the DataONE infrastructure, including:

• Serializing, deserializing, validating and type conversions for the DataONE XML types

• Parsing and generating X.509 v3 certificates with DataONE extension

• Parsing and generating OAI-ORE Resource Maps as used by DataONE

• Utilities for working with XML documents, URLs, date-times, etc, in the context of DataONE

Contents:

4.5.1 Installing DataONE Common Library for Python

DataONE Common Library for Python is distributed via PyPI, the Python Package Index.

Pip or another package manager such as apt may be used to install dependencies.

Note that versions available through package managers such as apt tend to lag significantly behind the latest versions,
so it is recommended that Pip is used to manage dependencies. In order to avoid potential conflicts with system
installed libraries, it is further recommended that a Virtual Environment or user installs of the dependencies are em-
ployed.

4.5.2 Windows

1. If you do not already have a working 32-bit Python 3.6 environment, download the latest 32-bit Python 3.6
Windows installer from http://www.python.org/download/ and install it.

110 Chapter 4. Contents

http://www.python.org/download/

DataONE Python Products

2. In Control Panel | Classic View | System | Advanced | Environment Variables,
add ;C:\Python27;C:\Python27\Scripts to the end of the Path.

3. Install pip:

> python -c "import urllib2; exec(urllib2.urlopen('https://bitbucket.org/pypa/
→˓setuptools/raw/bootstrap/ez_setup.py').read())"
> easy_install pip

4. Open a Command Prompt.

5. Install the DataONE Common Library for Python and dependencies:

> pip install dataone.common

4.5.3 Linux

1. Install pip (Python package installer):

$ sudo apt install --yes python-pip; sudo pip install pip --upgrade;

2. Install the DataONE Common Library for Python and dependencies:

$ sudo pip install dataone.common

4.5.4 Development

To set up a virtual environment:

pip install virtualenv
virtualenv dataone_python
source dataone_python/bin/activate
pip install -U iso8601
pip install -U pyxb
pip install -U requests

Or as a user specific installation:

pip install --user -U iso8601
pip install --user -U pyxb
pip install --user -U requests

4.5.5 Unit Tests

This library is shipped with unit tests that verify correct operation. It is recommended that these are executed after
installation.

4.5.6 Updating the library

To update your copy of the library to the latest version available on PyPI, run pip install with the --upgrade
option:

4.5. DataONE Common Library for Python 111

DataONE Python Products

$ sudo pip install --upgrade dataone.common

It may also be necessary to regenerate the DataONE type bindings after an update. See Types_ for more information.

4.5.7 API

d1_common package

DataONE Common Library.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Subpackages

d1_common.cert package

This package contains certificate related functionality, such as functions for extracting DataONE subjects from PEM
(base64) encoded X.509 v3 certificates and Java Web Tokens (JTWs) as used in DataONE.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Submodules

d1_common.cert.jwt module

JSON Web Token (JWT) parsing and validation.

• http://self-issued.info/docs/draft-jones-json-web-token-01.html

JWT representations:

• bu64: A URL safe flavor of Base64 used by JWTs

• jwt_bu64: A complete JWT consisting of three dot separated bu64 encoded parts: (header_bu64, payload_bu64,
signature_bu64)

• jwt_tup: A complete JWT consisting of a tuple of 3 decoded (raw) parts: (header_str, payload_str, signature_str)

d1_common.cert.jwt.get_subject_with_local_validation(jwt_bu64, cert_obj)
Validate the JWT and return the subject it contains.

• The JWT is validated by checking that it was signed with a CN certificate.

• The returned subject can be trusted for authz and authn operations.

• Possible validation errors include:

– A trusted (TLS/SSL) connection could not be made to the CN holding the signing certificate.

– The JWT could not be decoded.

– The JWT signature signature was invalid.

– The JWT claim set contains invalid “Not Before” or “Expiration Time” claims.

112 Chapter 4. Contents

http://self-issued.info/docs/draft-jones-json-web-token-01.html

DataONE Python Products

Parameters

• jwt_bu64 – bytes The JWT encoded using a a URL safe flavor of Base64.

• cert_obj – cryptography.Certificate Public certificate used for signing the JWT (typically
the CN cert).

Returns

• On successful validation, the subject contained in the JWT is returned.

• If validation fails for any reason, errors are logged and None is returned.

d1_common.cert.jwt.get_subject_with_remote_validation(jwt_bu64, base_url)
Same as get_subject_with_local_validation() except that the signing certificate is automatically downloaded
from the CN.

• Additional possible validations errors:

– The certificate could not be retrieved from the root CN.

d1_common.cert.jwt.get_subject_with_file_validation(jwt_bu64, cert_path)
Same as get_subject_with_local_validation() except that the signing certificate is read from a local PEM file.

d1_common.cert.jwt.get_subject_without_validation(jwt_bu64)
Extract subject from the JWT without validating the JWT.

• The extracted subject cannot be trusted for authn or authz.

Parameters jwt_bu64 – bytes JWT, encoded using a a URL safe flavor of Base64.

Returns The subject contained in the JWT.

Return type str

d1_common.cert.jwt.get_bu64_tup(jwt_bu64)
Split the Base64 encoded JWT to its 3 component sections.

Parameters jwt_bu64 – bytes JWT, encoded using a a URL safe flavor of Base64.

Returns Component sections of the JWT.

Return type 3-tup of Base64

d1_common.cert.jwt.get_jwt_tup(jwt_bu64)
Split and decode the Base64 encoded JWT to its 3 component sections.

• Reverse of get_jwt_bu64().

Parameters jwt_bu64 – bytes JWT, encoded using a a URL safe flavor of Base64.

Returns Raw component sections of the JWT.

Return type 3-tup of bytes

d1_common.cert.jwt.get_jwt_bu64(jwt_tup)
Join and Base64 encode raw JWT component sections.

• Reverse of get_jwt_tup().

Parameters jwt_tup – 3-tup of bytes Raw component sections of the JWT.

Returns

bytes JWT, encoded using a a URL safe flavor of Base64.

4.5. DataONE Common Library for Python 113

DataONE Python Products

Return type jwt_bu64

d1_common.cert.jwt.get_jwt_dict(jwt_bu64)
Parse Base64 encoded JWT and return as a dict.

• JWTs contain a set of values serialized to a JSON dict. This decodes the JWT and returns it as a dict
containing Unicode strings.

• In addition, a SHA1 hash is added to the dict for convenience.

Parameters jwt_bu64 – bytes JWT, encoded using a a URL safe flavor of Base64.

Returns Values embedded in and derived from the JWT.

Return type dict

d1_common.cert.jwt.validate_and_decode(jwt_bu64, cert_obj)
Validate the JWT and return as a dict.

• JWTs contain a set of values serialized to a JSON dict. This decodes the JWT and returns it as a dict.

Parameters

• jwt_bu64 – bytes The JWT encoded using a a URL safe flavor of Base64.

• cert_obj – cryptography.Certificate Public certificate used for signing the JWT (typically
the CN cert).

Raises JwtException – If validation fails.

Returns Values embedded in the JWT.

Return type dict

d1_common.cert.jwt.log_jwt_dict_info(log, msg_str, jwt_dict)
Dump JWT to log.

Parameters

• log – Logger Logger to which to write the message.

• msg_str – str A message to write to the log before the JWT values.

• jwt_dict – dict JWT containing values to log.

Returns None

d1_common.cert.jwt.log_jwt_bu64_info(log, msg_str, jwt_bu64)
Dump JWT to log.

Parameters

• log – Logger Logger to which to write the message.

• msg_str – str A message to write to the log before the JWT values.

• jwt_bu64 – bytes JWT, encoded using a a URL safe flavor of Base64.

Returns None

d1_common.cert.jwt.ts_to_str(jwt_dict)
Convert timestamps in JWT to human readable dates.

Parameters jwt_dict – dict JWT with some keys containing timestamps.

Returns Copy of input dict where timestamps have been replaced with human readable dates.

114 Chapter 4. Contents

DataONE Python Products

Return type dict

d1_common.cert.jwt.ts_to_dt(jwt_dict)
Convert timestamps in JWT to datetime objects.

Parameters jwt_dict – dict JWT with some keys containing timestamps.

Returns Copy of input dict where timestamps have been replaced with datetime.datetime() objects.

Return type dict

d1_common.cert.jwt.encode_bu64(b)
Encode bytes to a URL safe flavor of Base64 used by JWTs.

• Reverse of decode_bu64().

Parameters b – bytes Bytes to Base64 encode.

Returns URL safe Base64 encoded version of input.

Return type bytes

d1_common.cert.jwt.decode_bu64(b)
Encode bytes to a URL safe flavor of Base64 used by JWTs.

• Reverse of encode_bu64().

Parameters b – bytes URL safe Base64 encoded bytes to encode.

Returns Decoded bytes.

Return type bytes

exception d1_common.cert.jwt.JwtException
Bases: Exception

Exceptions raised directly by this module.

d1_common.cert.subject_info module

Utilities for handling the DataONE SubjectInfo type.

Overview of Access Control in DataONE

Access control in DataONE works much like traditional Access Control Lists (ACLs). Each science object is associ-
ated with an ACL. The ACL contains a list of subjects and an access level for each subject. The access levels are read,
write and changePermission. Each access level implicitly grants access to the lower levels, so only only the highest
access level for a given subject needs to be specified in the ACL.

This module handles the information that will be used for creating a list of authenticated subjects that can be compared
against an ACL in order to determine if a given subject is allowed to access the object at the requested level.

DataONE supports a system where subjects can be linked to equivalent identities as well as managed in groups. E.g.,
a group of subjects can be created and all the subjects in the group can be given access to an object by only listing the
single group subject in the object’s ACL.

A given subject can describe an actual identity, an equivalent subject or a group subject. Any type of subject can be
used in any capacity. E.g., each subject in a group can be any type of subject including another group.

4.5. DataONE Common Library for Python 115

DataONE Python Products

Since ACLs can also contain any combination of subjects for actual identities, equivalent subjects and groups subjects,
a list of subjects that includes all subjects that are associated with an authenticated subject is required in order to
determine if access should be granted.

Arbitrarily nested subjects must be supported. E.g., If subj-1 has been successfully authenticated, and subj-1 has an
equivalent subject called equiv-1, and equiv-1 is in a group with subject group-1, all of those subjects (subj-1, equiv-1,
and group-1), must be included in the list of associated subjects. That way, access is granted to the object regardless
of which of them are authenticated directly in the ACL.

Notes

• It’s important to separate the roles of groups in the ACL and groups in the SubjectInfo. Including a group subject
in an ACL grants access to all subjects in that group. However, including a subject that is in a group, in the ACL,
does not give access to the other subjects of the group or to the group itself. In other words, groups add access
for their members, not the other way around.

• In terms of generating a list of equivalent subjects based on SubjectInfo, the one way transfer of access from
groups to their subjects means that, when a subject is found to belong to a group, only the group subject is
included in the list (after which it may chain to more equivalent identifies, etc). The group members are not
included.

• For deriving a list of indirectly authenticated subjects, the SubjectInfo contains a set of statements that establish
subject types and relationships between subjects. There are 4 kinds of statements:

– Subject is a person

– Subject is an equivalent of another subject

– Subject is a group

– Subject is member of a group

• An equivalent subject can only be the equivalent for a person. The equivalence relationship is the only one
that causes each side to be granted all the rights of the other side, and so allows the two subjects to be used
interchangeably. The other relationships cause one side to be granted the rights of the other side, but not the
other way around. E.g.: Designating a subject as a member of a group causes the subject to be granted the rights
of the group, but does not cause the group to be granted the rights of the subject.

Authorization examples

Given SubjectInfo:

A = person subject A, authenticated by certificate
B = person subject B

C = equivalent to A
D = equivalent to B
E = equivalent to D

F = group with members G, H, B
J = group with members K, L, F
M = group with members E, N
N = group with members C, D

116 Chapter 4. Contents

DataONE Python Products

Given ACL containing: D

• D is equivalent to B

• B is a Person, but it’s unauthenticated

Authorization: Denied

Given ACL containing: N

• N is a group with members C and D

• D is equivalent to B, but B is not authenticated

• C is equivalent to A, and A is authenticated

Authorization: Granted

Given ACL containing: F

• F leads to G, H, B

• G -> unknown

• H -> unknown

• B -> person subject, but not authenticated

Authorization: Denied

d1_common.cert.subject_info.extract_subjects(subject_info_xml, primary_str)
Extract a set of authenticated subjects from a DataONE SubjectInfo.

• See subject_info_tree for details.

Parameters

• subject_info_xml – str A SubjectInfo XML document.

• primary_str – str A DataONE subject, typically a DataONE compliant serialization of
the DN of the DataONE X.509 v3 certificate extension from which the SubjectInfo was
extracted.

The primary subject can be viewed as the root of a tree. Any subject in the SubjectInfo
that is directly or indirectly connected to the root subject is included in the returned set of
authenticated subjects.

Returns

Set of authenticated subjects. Will always include the primary subject.

• All subjects in the returned set are equivalent to primary_str for the purpose of access
control for private science objects.

• If SubjectInfo does not contain all relevant records, it is still considered to be valid, but the
authenticated set will be incomplete.

• Only the subject strings and relationships in SubjectInfo are used by this function. Other
information about subjects, such as name and email address, is ignored.

4.5. DataONE Common Library for Python 117

DataONE Python Products

• No attempt should be made to infer type of subject from the content of a subject string. Sub-
ject strings should be handled as random Unicode sequences, each of which may designate
an person subject, an equivalent subject, or a group subject.

• To determine if an action is authorized, the returned set is checked against the authorized_set
for a given object. If one or more subjects exist in both sets, the action is authorized. The
check can be performed with high performance using a set union operation in Python or an
inner join in Postgres.

• Subject types are only known and relevant while processing the SubjectInfo type.

• The type of each subject in the authenticated_subjects and allowed_subjects lists are un-
known and irrelevant.

Return type set

Notes

Procedure:

The set of authenticated subjects is generated from the SubjectInfo and primary subject using the following
procedure:

• Start with empty set of subjects

• Add authenticatedUser

• If subject is not in set of subjects:

• Add subject

• Iterate over Person records

• If Person.subject is subject:

• If Person.verified is present and set:

• Add “verifiedUser”

• Iterate over Person.equivalentIdentity:

• Recursively add those subjects

• Iterate over Person.isMemberOf

• Recursively add those subjects, but ONLY check Group subjects

• Iterate over Group records

• If any Group.hasMember is subject:

• Recursively add Group.subject (not group members)

Handling of various invalid SubjectInfo and corner cases:

• SubjectInfo XML doc that is not well formed

• Return an exception that includes a useful error message with the line number of the issue

• person.isMemberOf and group.hasMember should always form pairs referencing each other.

• One side of the pair is missing

• Process the available side as normal

• person.isMemberOf subject references a person or equivalent instead of a group

118 Chapter 4. Contents

DataONE Python Products

• Only Group subjects are searched for isMemberOf references, so only the referenced Group subject is
added to the list of authorized subjects

• Multiple Person or Group records conflict by using the same subject

• The records are handled as equivalents

• person.isMemberOf subject does not reference a known subject

• If the Person containing the dangling isMemberOf IS NOT connected with the authenticated subject, the
whole record, including the isMemberOf subject is simply ignored

• If it IS connected with an authenticated subject, the isMemberOf subject is authenticated and recursive
processing of the subject is skipped

• Circular references

• Handled by skipping recursive add for subjects that are already added

• See the unit tests for example SubjectInfo XML documents for each of these issues and the expected
results.

d1_common.cert.subject_info.deserialize_subject_info(subject_info_xml)
Deserialize SubjectInfo XML doc to native object.

Parameters subject_info_xml – str SubjectInfo XML doc

Returns SubjectInfo PyXB object

d1_common.cert.subject_info.gen_subject_info_tree(subject_info_pyxb, authn_subj, in-
clude_duplicates=False)

Convert the flat, self referential lists in the SubjectInfo to a tree structure.

Parameters

• subject_info_pyxb – SubjectInfo PyXB object

• authn_subj – str The authenticated subject that becomes the root subject in the tree of
subjects built from the SubjectInfo.

Only subjects that are authenticated by a direct or indirect connection to this subject are
included in the tree.

• include_duplicates – Include branches of the tree that contain subjects that have already
been included via other branches.

If the tree is intended for rendering, including the duplicates will provide a more complete
view of the SubjectInfo.

Returns Tree of nodes holding information about subjects that are directly or indirectly connected
to the authenticated subject in the root.

Return type SubjectInfoNode

class d1_common.cert.subject_info.SubjectInfoNode(label_str, type_str)
Bases: object

Tree representation of SubjectInfo.

In SubjectInfo, nested information is represented via self- referential lists. This class holds a recursive tree of
nodes which simplifies processing of SubjectInfo for client apps.

SUBJECT_NODE_TAG = 'is_subject_node'

TYPE_NODE_TAG = 'is_type_node'

4.5. DataONE Common Library for Python 119

DataONE Python Products

add_child(label_str, type_str)
Add a child node.

node_gen
Generate all nodes for the tree rooted at this node.

Yields: SubjectInfoNode All nodes rooted at this node.

leaf_node_gen
Generate all leaf nodes for the tree rooted at this node.

Yields: SubjectInfoNode All leaf nodes rooted at this node.

parent_gen
Generate this node, then all parents from this node to the root.

Yields: SubjectInfoNode This node, then all parents from this node to the root.

get_path_str(sep=’/’, type_str=None)
Get path from root to this node.

Parameters

• sep – str One or more characters to insert between each element in the path. Defaults to
“/” on Unix and “” on Windows.

• type_str – SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only include
information from nodes of that type.

Returns String describing the path from the root to this node.

Return type str

get_leaf_node_path_list(sep=’/’, type_str=None)
Get paths for all leaf nodes for the tree rooted at this node.

Parameters

• sep – str One or more characters to insert between each element in the path. Defaults to
“/” on Unix and “” on Windows.

• type_str – SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only include
information from nodes of that type.

Returns The paths to the leaf nodes for the tree rooted at this node.

Return type list of str

get_path_list(type_str=None)
Get list of the labels of the nodes leading up to this node from the root.

Parameters type_str – SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only in-
clude information from nodes of that type.

Returns The labels of the nodes leading up to this node from the root.

Return type list of str

is_leaf
Return True if this is a leaf node (has no children)

get_label_set(type_str=None)
Get a set of label_str for the tree rooted at this node.

Parameters type_str – SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only in-
clude information from nodes of that type.

120 Chapter 4. Contents

DataONE Python Products

Returns The labels of the nodes leading up to this node from the root.

Return type set

get_subject_set()
Get a set of subjects for the tree rooted at this node.

Returns: set: The subjects for the tree rooted at this node.

d1_common.cert.subject_info.SubjectInfoTree
alias of d1_common.cert.subject_info.SubjectInfoNode

d1_common.cert.subject_info_renderer module

d1_common.cert.subjects module

Extract subjects from a DataONE PEM (Base64) encoded X.509 v3 certificate.

The DataONE infrastructure uses X.509 v3 certificates to represent sessions. A session contains assertions about the
identity of the caller. In particular, the session contains the primary identity, a list of equivalent identities and group
memberships of the caller.

d1_common.cert.subjects.extract_subjects(cert_pem)
Extract subjects from a DataONE PEM (Base64) encoded X.509 v3 certificate.

Parameters cert_pem – str or bytes PEM (Base64) encoded X.509 v3 certificate

Returns

• The primary subject string, extracted from the certificate DN.

• A set of equivalent identities, group memberships and inferred symbolic subjects extracted
from the SubjectInfo (if present.)

• All returned subjects are DataONE compliant serializations.

• A copy of the primary subject is always included in the set of equivalent identities.

Return type 2-tuple

d1_common.cert.view_subject_info module

d1_common.cert.x509 module

Utilities for processing X.509 v3 certificates.

d1_common.cert.x509.extract_subjects(cert_pem)
Extract primary subject and SubjectInfo from a DataONE PEM (Base64) encoded X.509 v3 certificate.

Parameters cert_pem – str or bytes PEM (Base64) encoded X.509 v3 certificate

Returns

• Primary subject (str) extracted from the certificate DN.

• SubjectInfo (XML str) if present (see the subject_info module for parsing)

Return type 2-tuple

d1_common.cert.x509.extract_subject_from_dn(cert_obj)
Serialize a DN to a DataONE subject string.

4.5. DataONE Common Library for Python 121

DataONE Python Products

Parameters cert_obj – cryptography.Certificate

Returns Primary subject extracted from the certificate DN.

Return type str

The certificate DN (DistinguishedName) is a sequence of RDNs (RelativeDistinguishedName). Each RDN is a
set of AVAs (AttributeValueAssertion / AttributeTypeAndValue). A DataONE subject is a plain string. As there
is no single standard specifying how to create a string representation of a DN, DataONE selected one of the
most common ways, which yield strings such as:

CN=Some Name A123,O=Some Organization,C=US,DC=Some Domain,DC=org

In particular, the sequence of RDNs is reversed. Attribute values are escaped, attribute type and value pairs
are separated by “=”, and AVAs are joined together with “,”. If an RDN contains an unknown OID, the OID is
serialized as a dotted string.

As all the information in the DN is preserved, it is not possible to create the same subject with two different
DNs, and the DN can be recreated from the subject.

d1_common.cert.x509.deserialize_pem(cert_pem)
Deserialize PEM (Base64) encoded X.509 v3 certificate.

Parameters cert_pem – str or bytes PEM (Base64) encoded X.509 v3 certificate

Returns cryptography.Certificate

Return type cert_obj

d1_common.cert.x509.deserialize_pem_file(cert_path)
Deserialize PEM (Base64) encoded X.509 v3 certificate in file.

Parameters cert_path – str or bytes Path to PEM (Base64) encoded X.509 v3 certificate file

Returns cryptography.Certificate

Return type cert_obj

d1_common.cert.x509.rdn_escape(rdn_str)
Escape string for use as an RDN (RelativeDistinguishedName)

The following chars must be escaped in RDNs: , = + < > # ; “

Parameters rdn_str – str

Returns Escaped string ready for use in an RDN (.)

Return type str

d1_common.cert.x509.extract_subject_info_extension(cert_obj)
Extract DataONE SubjectInfo XML doc from certificate.

Certificates issued by DataONE may include an embedded XML doc containing additional information about
the subject specified in the certificate DN. If present, the doc is stored as an extension with an OID specified by
DataONE and formatted as specified in the DataONE SubjectInfo schema definition.

Parameters cert_obj – cryptography.Certificate

Returns SubjectInfo XML doc if present, else None

Return type str

d1_common.cert.x509.download_as_der(base_url=’https://cn.dataone.org/cn’, time-
out_sec=60.0)

Download public certificate from a TLS/SSL web server as DER encoded bytes.

122 Chapter 4. Contents

DataONE Python Products

If the certificate is being downloaded in order to troubleshoot validation issues, the download itself may fail due
to the validation issue that is being investigated. To work around such chicken-and-egg problems, temporarily
wrap calls to the download_* functions with the disable_cert_validation() context manager (also in
this module).

Parameters

• base_url – str A full URL to a DataONE service endpoint or a server hostname

• timeout_sec – int or float Timeout for the SSL socket operations

Returns The server’s public certificate as DER encoded bytes.

Return type bytes

d1_common.cert.x509.download_as_pem(base_url=’https://cn.dataone.org/cn’, time-
out_sec=60.0)

Download public certificate from a TLS/SSL web server as PEM encoded string.

Also see download_as_der().

Parameters

• base_url – str A full URL to a DataONE service endpoint or a server hostname

• timeout_sec – int or float Timeout for the SSL socket operations

Returns The certificate as a PEM encoded string.

Return type str

d1_common.cert.x509.download_as_obj(base_url=’https://cn.dataone.org/cn’, time-
out_sec=60.0)

Download public certificate from a TLS/SSL web server as Certificate object.

Also see download_as_der().

Parameters

• base_url – str A full URL to a DataONE service endpoint or a server hostname

• timeout_sec – int or float Timeout for the SSL socket operations

Returns cryptography.Certificate

d1_common.cert.x509.decode_der(cert_der)
Decode cert DER string to Certificate object.

Parameters cert_der – Certificate as a DER encoded string

Returns cryptography.Certificate()

d1_common.cert.x509.disable_cert_validation()
Context manager to temporarily disable certificate validation in the standard SSL library.

Note: This should not be used in production code but is sometimes useful for troubleshooting certificate valida-
tion issues.

By design, the standard SSL library does not provide a way to disable verification of the server side certificate.
However, a patch to disable validation is described by the library developers. This context manager allows
applying the patch for specific sections of code.

d1_common.cert.x509.extract_issuer_ca_cert_url(cert_obj)
Extract issuer CA certificate URL from certificate.

Certificates may include a URL where the root certificate for the CA which was used for signing the certificate
can be downloaded. This function returns the URL if present.

4.5. DataONE Common Library for Python 123

DataONE Python Products

The primary use for this is to fix validation failure due to non-trusted issuer by downloading the root CA
certificate from the URL and installing it in the local trust store.

Parameters cert_obj – cryptography.Certificate

Returns Issuer certificate URL if present, else None

Return type str

d1_common.cert.x509.log_cert_info(log, msg_str, cert_obj)
Dump basic certificate values to the log.

Parameters

• log – Logger Logger to which to write the certificate values.

• msg_str – str A message to write to the log before the certificate values.

• cert_obj – cryptography.Certificate Certificate containing values to log.

Returns None

d1_common.cert.x509.get_extension_by_name(cert_obj, extension_name)
Get a standard certificate extension by attribute name.

Parameters

• cert_obj – cryptography.Certificate Certificate containing a standard extension.

• extension_name – str Extension name. E.g., ‘SUBJECT_DIRECTORY_ATTRIBUTES’.

Returns Cryptography.Extension

d1_common.cert.x509.get_val_list(obj, path_list, reverse=False)
Extract values from nested objects by attribute names.

Objects contain attributes which are named references to objects. This will descend down a tree of nested
objects, starting at the given object, following the given path.

Parameters

• obj – object Any type of object

• path_list – list Attribute names

• reverse – bool Reverse the list of values before concatenation.

Returns list of objects

d1_common.cert.x509.get_val_str(obj, path_list=None, reverse=False)
Extract values from nested objects by attribute names and concatenate their string representations.

Parameters

• obj – object Any type of object

• path_list – list Attribute names

• reverse – bool Reverse the list of values before concatenation.

Returns Concatenated extracted values.

Return type str

d1_common.cert.x509.get_ext_val_str(cert_obj, extension_name, path_list=None)
Get value from certificate extension.

Parameters

124 Chapter 4. Contents

DataONE Python Products

• cert_obj – cryptography.Certificate Certificate containing a standard extension.

• extension_name – str Extension name. E.g., ‘SUBJECT_DIRECTORY_ATTRIBUTES’.

• path_list – list Attribute names

Returns String value of extension

Return type str

d1_common.cert.x509.serialize_cert_to_pem(cert_obj)
Serialize certificate to PEM.

Parameters cert_obj – cryptography.Certificate

Returns PEM encoded certificate

Return type bytes

d1_common.cert.x509.serialize_cert_to_der(cert_obj)
Serialize certificate to DER.

Parameters cert_obj – cryptography.Certificate

Returns DER encoded certificate

Return type bytes

d1_common.cert.x509.get_public_key_pem(cert_obj)
Extract public key from certificate as PEM encoded PKCS#1.

Parameters cert_obj – cryptography.Certificate

Returns PEM encoded PKCS#1 public key.

Return type bytes

d1_common.ext package

Submodules

d1_common.ext.mimeparser module

MIME-Type Parser.

This module provides basic functions for handling mime-types. It can handle matching mime-types against a list of
media-ranges. See section 14.1 of the HTTP specification [RFC 2616] for a complete explanation.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1

Contents:

• parse_mime_type(): Parses a mime-type into its component parts.

• parse_media_range(): Media-ranges are mime-types with wild-cards and a ‘q’ quality parameter.

• quality(): Determines the quality (‘q’) of a mime-type when compared against a list of media-ranges.

• quality_parsed(): Just like quality() except the second parameter must be pre-parsed.

• best_match(): Choose the mime-type with the highest quality (‘q’) from a list of candidates.

4.5. DataONE Common Library for Python 125

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1

DataONE Python Products

d1_common.ext.mimeparser.parse_mime_type(mime_type)
Carves up a mime-type and returns a tuple of the (type, subtype, params) where ‘params’ is a dictionary of all
the parameters for the media range. For example, the media range ‘application/xhtml;q=0.5’ would get parsed
into:

(‘application’, ‘xhtml’, {‘q’, ‘0.5’})

d1_common.ext.mimeparser.parse_media_range(range)
Carves up a media range and returns a tuple of the (type, subtype, params) where ‘params’ is a dictionary of all
the parameters for the media range. For example, the media range ‘application/*;q=0.5’ would get parsed into:

(‘application’, ‘*’, {‘q’, ‘0.5’})

In addition this function also guarantees that there is a value for ‘q’ in the params dictionary, filling it in with a
proper default if necessary.

d1_common.ext.mimeparser.fitness_and_quality_parsed(mime_type, parsed_ranges)
Find the best match for a given mime-type against a list of media_ranges that have already been parsed by
parse_media_range().

Returns a tuple of the fitness value and the value of the ‘q’ quality parameter of the best match, or (-1, 0) if no
match was found. Just as for quality_parsed(), ‘parsed_ranges’ must be a list of parsed media ranges.

d1_common.ext.mimeparser.quality_parsed(mime_type, parsed_ranges)
Find the best match for a given mime-type against a list of media_ranges that have already been parsed by
parse_media_range().

Returns the ‘q’ quality parameter of the best match, 0 if no match was found. This function bahaves the same
as quality() except that ‘parsed_ranges’ must be a list of parsed media ranges.

d1_common.ext.mimeparser.quality(mime_type, ranges)
Returns the quality ‘q’ of a mime-type when compared against the media- ranges in ranges. For example:

>>> quality('text/html', 'text/*;q=0.3, text/html;q=0.7, text/html;level=1,
text/html;level=2;q=0.4, */*;q=0.5')
0.7

d1_common.ext.mimeparser.best_match(supported, header)
Takes a list of supported mime-types and finds the best match for all the media- ranges listed in header. The value
of header must be a string that conforms to the format of the HTTP Accept: header. The value of ‘supported’ is
a list of mime-types.

>>> best_match(['application/xbel+xml', 'text/xml'], 'text/*;q=0.5,*/*; q=0.1')
'text/xml'

d1_common.iter package

This package contains iterators that provide a convenient way to retrieve and iterate over Node contents.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Submodules

d1_common.iter.bytes module

Generator that returns a bytes object in chunks.

126 Chapter 4. Contents

DataONE Python Products

class d1_common.iter.bytes.BytesIterator(bytes_, chunk_size=1024)
Bases: object

Generator that returns a bytes object in chunks.

size
Returns:

int: The total number of bytes that will be returned by the iterator.

d1_common.iter.file module

Generator that returns the bytes of a file in chunks.

class d1_common.iter.file.FileIterator(path, chunk_size=1024)
Bases: object

Generator that returns the bytes of a file in chunks.

size
Returns:

int : The total number of bytes that will be returned by the iterator.

class d1_common.iter.file.FileLikeObjectIterator(file, chunk_size=1024)
Bases: object

Generator that returns the bytes of a file-like object in chunks.

size
Returns:

int : The total number of bytes that will be returned by the iterator.

d1_common.iter.path module

Generator that resolves a list of file and dir paths and returns file paths with optional filtering and client feedback.

d1_common.iter.path.path_generator(path_list, include_glob_list=None, ex-
clude_glob_list=None, recursive=True, ig-
nore_invalid=False, default_excludes=True, re-
turn_dir_paths=False)

language=rst.

Parameters

• path_list – list of str

List of file- and dir paths. File paths are used directly and dirs are searched for files.

path_list does not accept glob patterns, as it’s more convenient to let the shell expand
glob patterns to directly specified files and dirs. E.g., to use a glob to select all .py files in
a subdir, the command may be called with sub/dir/*.py, which the shell expands to a list of
files, which are then passed to this function. The paths should be Unicode or utf-8 strings.
Tilde (“~”) to home expansion is performed on the paths.

The shell can also expand glob patterns to dir paths or a mix of file and dir paths.

• include_glob_list – list of str

4.5. DataONE Common Library for Python 127

DataONE Python Products

• exclude_glob_list – list of str

Patterns ending with “/” are matched only against dir names. All other patterns are matched
only against file names.

If the include list contains any file patterns, files must match one or more of the patterns in
order to be returned.

If the include list contains any dir patterns, dirs must match one or more of the patterns in
order for the recursive search to descend into them.

The exclude list works in the same way except that matching files and dirs are excluded
instead of included. If both include and exclude lists are specified, files and dirs must both
match the include and not match the exclude patterns in order to be returned or descended
into.

• recursive – bool

– True (default): Search subdirectories

– False: Do not search subdirectories

• ignore_invalid – bool

– True: Invalid paths in path_list are ignored.

– False (default): EnvironmentError is raised if any of the paths in path_list do not
reference an existing file or dir.

• default_excludes – bool

– True: A list of glob patterns for files and dirs that should typically be ignored is added to
any exclude patterns passed to the function. These include dirs such as .git and backup
files, such as files appended with “~”.

– False: No files or dirs are excluded by default.

• return_dir_paths – bool

– False: Only file paths are returned.

– True: Directory paths are also returned.

Returns File path iterator

Notes

During iteration, the iterator can be prevented from descending into a directory by sending a “skip” flag when
the iterator yields the directory path. This allows the client to determine if directories should be iterated by, for
instance, which files are present in the directory. This can be used in conjunction with the include and exclude
glob lists. Note that, in order to receive directory paths that can be skipped, return_dir_paths must be set
to True.

The regular for...in syntax does not support sending the “skip” flag back to the iterator. Instead, use a
pattern like:

itr = file_iterator.file_iter(..., return_dir_paths=True)
try:
path = itr.next()
while True:
skip_dir = determine_if_dir_should_be_skipped(path)
file_path = itr.send(skip_dir)

(continues on next page)

128 Chapter 4. Contents

DataONE Python Products

(continued from previous page)

except KeyboardInterrupt:
raise StopIteration

except StopIteration:
pass

Glob patterns are matched only against file and directory names, not the full paths.

Paths passed directly in path_list are not filtered.

The same file can be returned multiple times if path_list contains duplicated file paths or dir paths, or dir
paths that implicitly include the same subdirs.

include_glob_list and exclude_glob_list are handy for filtering the files found in dir searches.

Remember to escape the include and exclude glob patterns on the command line so that they’re not expanded
by the shell.

d1_common.iter.string module

Generator that returns the Unicode characters of a str in chunks.

class d1_common.iter.string.StringIterator(string, chunk_size=1024)
Bases: object

Generator that returns the Unicode characters of a str in chunks.

size
Returns:

int : The total number of characters that will be returned by the iterator.

d1_common.types package

DataONE API types

DataONE services use XML messaging over HTTP as the primary means of communication between service nodes
and clients. The XML messages are defined by XML Schema specifications and must be valid.

This package provides serialization, deserialization and validation of DataONE API XML types, allowing developers
to handle the DataONE types as native objects, reducing development time.

Implicit validation is performed whenever objects are serialized and deserialized, so that developers can assume that
information that was received from a DataONE node is complete and syntactically correct before attempting to process
it. Also, attempts to submit incomplete or syntactically incorrect information to a DataONE node cause local errors
that are easy to debug, rather than less specific errors returned from the target node to which the incorrect types were
sent.

Notes

PyXB generated classes are specific to the version of the schema and the version of PyXB installed. Hence, even
though PyXB generated classes are provided with the distribution of d1_common_python, it may be necessary to
regenerate the classes depending on the particular version of PyXB installed.

To regenerate the binding classes, call the genbind script:

4.5. DataONE Common Library for Python 129

DataONE Python Products

cd to the src folder of this distribution
$ export D1COMMON_ROOT="$(pwd)"
$ bash ${D1COMMON_ROOT}/d1_common/types/scripts/genbind

See also:

The DataONE API XML Schemas.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Submodules

d1_common.types.dataoneErrors module

Import the PyXB binding required for handling the DataONE Exception types.

d1_common.types.dataoneTypes module

Combine the PyXB bindings required for handling all DataONE types.

d1_common.types.dataoneTypes_v1 module

Import PyXB bindings required for handling v1.0 DataONE types.

d1_common.types.dataoneTypes_v1_1 module

Combine all PyXB bindings required for handling DataONE types up to and including v1.1.

d1_common.types.dataoneTypes_v1_2 module

Combine all PyXB bindings required for handling DataONE types up to and including v1.1.

d1_common.types.dataoneTypes_v2_0 module

Combine the PyXB bindings required for handling all DataONE types.

d1_common.types.exceptions module

Native objects for holding DataONE Exceptions.

• Wrap the PyXB client with Exception based classes

• PyXB based XML serialization and deserialization

• Add deserialize to string and HTTP headers

130 Chapter 4. Contents

https://repository.dataone.org/software/cicore/trunk/schemas/

DataONE Python Products

Notes

traceInformation:

traceInformation is an xs:anyType, meaning that is essentially the root of a new XML document of arbitrary complex-
ity. Since the contents of the elements are unknown at the time when the PyXB binding are created, PyXB cannot
automatically serialize and deserialize the traceInformation field together with the rest of the DataONEException
XML type.

To make it easier to use the traceInformation element, we support a special case where it can be read and written as a
single string of bytes, where the contents are application specific. Any other content must be generated and parsed as
XML by the user.

Example of serialized DataONE Exception:

<error detailCode="1020" errorCode="404" name="NotFound" identifier="testpid">
<description>Attempted to perform operation on non-existing object</description>
<traceInformation>view_handler.py(128)
views.py(102)
auth.py(392)
auth.py(315)
</traceInformation>
</error>

d1_common.types.exceptions.xml_is_dataone_exception(xml_str)
Return True if XML doc is a valid DataONE Exception.

d1_common.types.exceptions.pyxb_is_dataone_exception(obj_pyxb)
Return True if PyXB object is a valid DataONE Exception.

d1_common.types.exceptions.deserialize(dataone_exception_xml)
Deserialize a DataONE Exception XML doc.

d1_common.types.exceptions.deserialize_from_headers(headers)
Deserialize a DataONE Exception that is stored in a map of HTTP headers (used in responses to HTTP HEAD
requests).

d1_common.types.exceptions.create_exception_by_name(name, detailCode=’0’, descrip-
tion=”, traceInformation=None,
identifier=None, nodeId=None)

Create a DataONEException based object by name.

Parameters

• name – str The type name of a DataONE Exception. E.g. NotFound.

If an unknown type name is used, it is automatically set to ServiceFailure. As the XML
Schema for DataONE Exceptions does not restrict the type names, this may occur when
deserializing an exception not defined by DataONE.

• detailCode – int Optional index into a table of predefined error conditions.

See also:

For remaining args, see: DataONEException()

d1_common.types.exceptions.create_exception_by_error_code(errorCode, detail-
Code=’0’, descrip-
tion=”, traceIn-
formation=None,
identifier=None,
nodeId=None)

4.5. DataONE Common Library for Python 131

DataONE Python Products

Create a DataONE Exception object by errorCode.

See Also: For args, see: DataONEException()

exception d1_common.types.exceptions.DataONEException(errorCode, detailCode=’0’,
description=”, traceInforma-
tion=None, identifier=None,
nodeId=None)

Bases: Exception

Base class for exceptions raised by DataONE.

__init__(errorCode, detailCode=’0’, description=”, traceInformation=None, identifier=None,
nodeId=None)

Args: errorCode: int HTTP Status code for the error. E.g., NotFound is 404.

detailCode: int Optional index into a table of predefined error conditions.

description: str Optional additional information about the error, intended for users. E.g., if the error is
NotFound, this may the resource that was not found.

traceInformation: str Optional additional information about the error, intended for developers. E.g.,
stack traces or source code references.

identifier: str Optional Persistent ID (PID) or Series ID (SID).

nodeId: str Optional Node Identifier URN. E.g., urn:node:MyNode

friendly_format()
Serialize to a format more suitable for displaying to end users.

serialize_to_transport(encoding=’utf-8’, xslt_url=None)
Serialize to XML bytes with prolog.

Parameters

• encoding – str Encoding to use for XML doc bytes

• xslt_url – str If specified, add a processing instruction to the XML doc that specifies the
download location for an XSLT stylesheet.

Returns XML holding a DataONEError based type.

Return type bytes

serialize_to_display(xslt_url=None)
Serialize to a pretty printed Unicode str, suitable for display.

Args: xslt_url: url Optional link to an XSLT stylesheet. If provided, a processing instruction for the
stylesheet is included in the XML prolog.

encode(encoding=’utf-8’)
Serialize to UTF-8 encoded XML bytes with prolog.

serialize_to_headers()
Serialize to a dict of HTTP headers.

Used in responses to HTTP HEAD requests. As with regular HTTP GET requests, HEAD requests may
return DataONE Exceptions. Since a response to a HEAD request cannot include a body, the error is
returned as a set of HTTP headers instead of an XML document.

get_pyxb()
Generate a DataONE Exception PyXB object.

The PyXB object supports directly reading and writing the individual values that may be included in a
DataONE Exception.

132 Chapter 4. Contents

urn:node:MyNode

DataONE Python Products

name
Returns:

str: Type name of object based on DataONEException. E.g.: AuthenticationTimeout.

exception d1_common.types.exceptions.AuthenticationTimeout(detailCode, descrip-
tion=None, trace-
Information=None,
identifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type AuthenticationTimeout.

See Also: DataONEException()

exception d1_common.types.exceptions.IdentifierNotUnique(detailCode, descrip-
tion=None, trace-
Information=None,
identifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type IdentifierNotUnique.

See Also: DataONEException()

exception d1_common.types.exceptions.InsufficientResources(detailCode, descrip-
tion=None, trace-
Information=None,
identifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type InsufficientResources.

See Also: DataONEException()

exception d1_common.types.exceptions.InvalidCredentials(detailCode, descrip-
tion=None, traceInfor-
mation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type InvalidCredentials.

See Also: DataONEException()

exception d1_common.types.exceptions.InvalidRequest(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type InvalidRequest.

See Also: DataONEException()

exception d1_common.types.exceptions.InvalidSystemMetadata(detailCode, descrip-
tion=None, trace-
Information=None,
identifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

4.5. DataONE Common Library for Python 133

DataONE Python Products

DataONE Exception of type InvalidSystemMetadata.

See Also: DataONEException()

exception d1_common.types.exceptions.InvalidToken(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type InvalidToken.

See Also: DataONEException()

exception d1_common.types.exceptions.NotAuthorized(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type NotAuthorized.

See Also: DataONEException()

exception d1_common.types.exceptions.NotFound(detailCode, description=None, trace-
Information=None, identifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type NotFound.

See Also: DataONEException()

exception d1_common.types.exceptions.NotImplemented(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type NotImplemented.

See Also: DataONEException()

exception d1_common.types.exceptions.ServiceFailure(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type ServiceFailure.

See Also: DataONEException()

exception d1_common.types.exceptions.UnsupportedMetadataType(detailCode, de-
scription=None,
traceInforma-
tion=None, iden-
tifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type UnsupportedMetadataType.

See Also: DataONEException()

exception d1_common.types.exceptions.UnsupportedType(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

134 Chapter 4. Contents

DataONE Python Products

DataONE Exception of type UnsupportedType.

See Also: DataONEException()

exception d1_common.types.exceptions.SynchronizationFailed(detailCode, descrip-
tion=None, trace-
Information=None,
identifier=None,
nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type SynchronizationFailed.

See Also: DataONEException()

exception d1_common.types.exceptions.VersionMismatch(detailCode, description=None,
traceInformation=None, identi-
fier=None, nodeId=None)

Bases: d1_common.types.exceptions.DataONEException

DataONE Exception of type VersionMismatch.

See Also: DataONEException()

d1_common.utils package

DataONE Common Library.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Submodules

d1_common.utils.filesystem module

Utilities for filesystem paths and operations.

d1_common.utils.filesystem.gen_safe_path(*path_list)
Escape characters that are not allowed or often cause issues when used in file- or directory names, then join the
arguments to a filesystem path.

Parameters positional args – str Strings to use as elements in a filesystem path, such as PID, SID
or URL.

Returns A path safe for use as a as a file- or directory name.

Return type str

d1_common.utils.filesystem.gen_safe_path_element(s)
Escape characters that are not allowed or often cause issues when used in file- or directory names.

Parameters s – str Any string, such as a PID, SID or URL

Returns A string safe for use as a file- or directory name.

Return type str

d1_common.utils.filesystem.create_missing_directories_for_file(file_path)
Create any directories in dir_path that do not yet exist.

4.5. DataONE Common Library for Python 135

DataONE Python Products

Parameters file_path – str Relative or absolute path to a file that may or may not exist.

Must be a file path, as any directory element at the end of the path will not be created.

See also:

create_missing_directories_for_dir()

d1_common.utils.filesystem.create_missing_directories_for_dir(dir_path)
Create any directories in dir_path that do not yet exist.

Parameters dir_path – str Relative or absolute path to a directory that may or may not exist.

Must be a directory path, as any filename element at the end of the path will also be created as a
directory.

See also:

create_missing_directories_for_file()

d1_common.utils.filesystem.abs_path_from_base(base_path, rel_path)
Join a base and a relative path and return an absolute path to the resulting location.

Parameters

• base_path – str Relative or absolute path to prepend to rel_path.

• rel_path – str Path relative to the location of the module file from which this function is
called.

Returns Absolute path to the location specified by rel_path.

Return type str

d1_common.utils.filesystem.abs_path(rel_path)
Convert a path that is relative to the module from which this function is called, to an absolute path.

Parameters rel_path – str Path relative to the location of the module file from which this function
is called.

Returns Absolute path to the location specified by rel_path.

Return type str

d1_common.utils.progress_logger module

One stop shop for providing progress information and event counts during time consuming operations performed in
command line scripts and Django management commands.

The ProgressLogger keeps track of how many tasks have been processed by a script, how many are remaining, and
how much time has been used. It then calculates and periodically displays a progress update containing an ETA and
completed percentage.

The ProgressLogger can also be used for counting errors and other notable events that may occur during processing,
and displays total count for each type of tracked event in the progress updates.

In the following example, progress information is added to a script that processes the tasks in a list of tasks. All the
tasks require the same processing, so there’s only one task type, and one loop in the script.

import logging import d1_common.utils.progress_logger

def main(): logging.basicConfig(level=logging.DEBUG)

progress_logger = d1_common.utils.progress_logger.ProgressLogger()

136 Chapter 4. Contents

DataONE Python Products

long_task_list = get_long_task_list()

self.progress_logger.start_task_type(“My time consuming task”, len(long_task_list)

)

for task in long_task_list: self.progress_logger.start_task(“My time consuming task”)
do_time_consuming_work_on_task(task) if task.has_some_issue():

progress_logger.event(‘Task has issue’)

if task.has_other_issue(): progress_logger.event(‘Task has other issue’)

self.progress_logger.end_task_type(“My time consuming task”)

self.progress_logger.completed()

Yields progress output such as:

My time consuming task: 64/1027 (6.23% 0d00h00m) My time consuming task: 123/1027 (11.98%
0d00h00m) My time consuming task: 180/1027 (17.53% 0d00h00m) Events:

Task has issue: 1

My time consuming task: 236/1027 (22.98% 0d00h00m) Events:

Task has issue: 2 Task has other issue: 1

My time consuming task: 436/1027 (32.98% 0d00h00m) Events:

Task has issue: 2 Task has other issue: 1

My time consuming task: 636/1027 (44.12% 0d00h00m) Events:

Task has issue: 2 Task has other issue: 1

Completed. runtime_sec=5.44 total_run_dhm=”0d00h00m”

class d1_common.utils.progress_logger.ProgressLogger(logger=None, log_level=20,
log_interval_sec=1.0)

Bases: object

__init__(logger=None, log_level=20, log_interval_sec=1.0)
Create one object of this class at the start of the script and keep a reference to it while the script is running.

Parameters

• logger – Optional logger to which the progress log entries are written. A new logger is
created if not provided.

• level – The level of severity to set for the progress log entries.

• event_counter – Optional EventCounter to use for recording events

• log_interval_sec – Minimal time between writing log entries. Log entries may be written
with less time between entries if the total processing time for a task type is less than the
interval, or if processing multiple task types concurrently.

start_task_type(task_type_str, total_task_count)
Call when about to start processing a new type of task, typically just before entering a loop that processes
many task of the given type.

Parameters

• task_type_str (str) – The name of the task, used as a dict key and printed in the progress
updates.

• total_task_count (int) – The total number of the new type of task that will be processed.

4.5. DataONE Common Library for Python 137

DataONE Python Products

This starts the timer that is used for providing an ETA for completing all tasks of the given type.

The task type is included in progress updates until end_task_type() is called.

end_task_type(task_type_str)
Call when processing of all tasks of the given type is completed, typically just after exiting a loop that
processes many tasks of the given type.

Progress messages logged at intervals will typically not include the final entry which shows that processing
is 100% complete, so a final progress message is logged here.

start_task(task_type_str, current_task_index=None)
Call when processing is about to start on a single task of the given task type, typically at the top inside of
the loop that processes the tasks.

Parameters

• task_type_str (str) – The name of the task, used as a dict key and printed in the progress
updates.

• current_task_index (int) – If the task processing loop may skip or repeat tasks, the index
of the current task must be provided here. This parameter can normally be left unset.

event(event_name)
Register an event that occurred during processing of a task of the given type.

Args: event_name: str A name for a type of events. Events of the same type are displayed as a single entry
and a total count of occurences.

completed()
Call when about to exit the script.

Logs total runtime for the script and issues a warning if there are still active task types. Active task types
should be closed with end_task_type() when processing is completed for tasks of the given type in order
for accurate progress messages to be displayed.

d1_common.wrap package

DataONE API Type wrappers.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Submodules

d1_common.wrap.access_policy module

Context manager for working with the DataONE AccessPolicy type.

Examples

Perform multiple operations on an AccessPolicy:

Wrap a SystemMetadata PyXB object to modify its AccessPolicy section
with d1_common.wrap.access_policy.wrap(sysmeta_pyxb) as ap:

Print a list of subjects that have the changePermission access level

(continues on next page)

138 Chapter 4. Contents

DataONE Python Products

(continued from previous page)

print(ap.get_subjects('changePermission'))

Clear any existing rules in the access policy
ap.clear()

Add a new rule
ap.add_perm('subj1', 'read')

Exit the context manager scope to write the changes that were made back to the
wrapped SystemMetadata.

If only a single operation is to be performed, use one of the module level functions:

Add public public read permission to an AccessPolicy. This adds an allow rule with
a "read" permission for the symbolic subject, "public". It is a no no-op if any of
the existing rules already provide "read" or better to "public".
add_public_read(access_pyxb)

Notes

Overview:

Each science object in DataONE has an associated SystemMetadata document in which there is an AccessPolicy
element. The AccessPolicy contains rules assigning permissions to subjects. The supported permissions are read,
write and changePermission.

write implicitly includes read, and changePermission implicitly includes read and write. So, only a
single permission needs to be assigned to a subject in order to determine all permissions for the subject.

There can be multiple rules in a policy and each rule can contain multiple subjects and permissions. So the same subject
can be specified multiple times in the same rules or in different rules, each time with a different set of permissions,
while permissions also implicitly include lower permissions.

Due to this, the same permissions can be expressed in many different ways. This wrapper hides the variations, exposing
a single canonical set of rules that can be read, modified and written. That is, the wrapper allows working with any set
of permissions in terms of the simplest possible representation that covers the resulting effective permissions.

E.g., the following two access policies are equivalent. The latter represents the canonical representation of the former.

<accessPolicy>
<allow>
<subject>subj2</subject>
<subject>subj1</subject>
<perm>read</perm>

</allow>
<allow>
<subject>subj4</subject>
<perm>read</perm>
<perm>changePermission</perm>

</allow>
<allow>
<subject>subj2</subject>
<subject>subj3</subject>
<perm>read</perm>
<perm>write</perm>

</allow>
(continues on next page)

4.5. DataONE Common Library for Python 139

DataONE Python Products

(continued from previous page)

<allow>
<subject>subj5</subject>
<perm>read</perm>
<perm>write</perm>

</allow>
</accessPolicy>

and

<accessPolicy>
<allow>
<subject>subj1</subject>
<perm>read</perm>

</allow>
<allow>
<subject>subj2</subject>
<subject>subj3</subject>
<subject>subj5</subject>
<perm>write</perm>

</allow>
<allow>
<subject>subj4</subject>
<perm>changePermission</perm>

</allow>
</accessPolicy>

Representations of rules, permissions and subjects:

subj_dict maps each subj to the perms the the subj has specifically been given. It holds perms just having been
read for PyXB. Duplicates caused by the same subj being given the same perm in multiple ways are filtered out.

{
'subj1': { 'read' },
'subj2': { 'read', 'write' },
'subj3': { 'read', 'write' },
'subj4': { 'changePermission', 'read' },
'subj5': { 'read', 'write' }

}

perm_dictmaps each perm that a subj has specifically been given, to the subj. If the AccessPolicy contains multiple
allow elements, and they each give different perms to a subj, those show up as additional mappings. Duplicates
caused by the same subj being given the same perm in multiple ways are filtered out. Calls such as add_perm()
also cause extra mappings to be added here, as long as they’re not exact duplicates. Whenever this dict is used for
generating PyXB or making comparisons, it is first normalized to a norm_perm_list.

{
'read': { 'subj1', 'subj2' },
'write': { 'subj3' },
'changePermission': { 'subj2' },

}

subj_highest_dict maps each subj to the highest perm the subj has. The dict has the same number of keys as
there are subj.

{
'subj1': 'write',

(continues on next page)

140 Chapter 4. Contents

DataONE Python Products

(continued from previous page)

'subj2': 'changePermission',
'subj3': 'write',

}

highest_perm_dict maps the highest perm a subj has, to the subj. The dict can have at most 3 keys:

{
'changePermission': { 'subj2', 'subj3', 'subj5', 'subj6' },
'read': { 'public' },
'write': { 'subj1', 'subj4' }

}

norm_perm_list is a minimal, ordered and hashable list of lists. The top level has up to 3 lists, one for each perm
that is in use. Each of the lists then has a list of subj for which that perm is the highest perm. norm_perm_list is the
shortest way that the required permissions can be expressed, and is used for comparing access policies and creating
uniform PyXB objects:

[
['read', ['public']],
['write', ['subj1', 'subj4']],
['changePermission', ['subj2', 'subj3', 'subj5', 'subj6']]

]

d1_common.wrap.access_policy.wrap(access_pyxb, read_only=False)
Work with the AccessPolicy in a SystemMetadata PyXB object.

Parameters

• access_pyxb – AccessPolicy PyXB object The AccessPolicy to modify.

• read_only – bool Do not update the wrapped AccessPolicy.

When only a single AccessPolicy operation is needed, there’s no need to use this context manager. Instead, use
the generated context manager wrappers.

d1_common.wrap.access_policy.wrap_sysmeta_pyxb(sysmeta_pyxb, read_only=False)
Work with the AccessPolicy in a SystemMetadata PyXB object.

Parameters

• sysmeta_pyxb – SystemMetadata PyXB object SystemMetadata containing the AccessPol-
icy to modify.

• read_only – bool Do not update the wrapped AccessPolicy.

When only a single AccessPolicy operation is needed, there’s no need to use this context manager. Instead, use
the generated context manager wrappers.

There is no clean way in Python to make a context manager that allows client code to replace the object that
is passed out of the manager. The AccessPolicy schema does not allow the AccessPolicy element to be empty.
However, the SystemMetadata schema specifies the AccessPolicy as optional. By wrapping the SystemMetadata
instead of the AccessPolicy when working with AccessPolicy that is within SystemMetadata, the wrapper can
handle the situation of empty AccessPolicy by instead dropping the AccessPolicy from the SystemMetadata.

class d1_common.wrap.access_policy.AccessPolicyWrapper(access_pyxb)
Bases: object

Wrap an AccessPolicy and provide convenient methods to read, write and update it.

Parameters access_pyxb – AccessPolicy PyXB object The AccessPolicy to modify.

4.5. DataONE Common Library for Python 141

DataONE Python Products

update()
Update the wrapped AccessPolicy PyXB object with normalized and minimal rules representing current
state.

get_normalized_pyxb()
Returns:

AccessPolicy PyXB object : Current state of the wrapper as the minimal rules required for correctly
representing the perms.

get_normalized_perm_list()
Returns:

A minimal, ordered, hashable list of subjects and permissions that represents the current state of the wrap-
per.

get_highest_perm_str(subj_str)

Parameters subj_str – str Subject for which to retrieve the highest permission.

Returns The highest permission for subject or None if subject does not have any permissions.

get_effective_perm_list(subj_str)

Parameters subj_str – str Subject for which to retrieve the effective permissions.

Returns

List of permissions up to and including the highest permission for subject, ordered lower to
higher, or empty list if subject does not have any permissions.

E.g.: If ‘write’ is highest permission for subject, return [‘read’, ‘write’].

Return type list of str

get_subjects_with_equal_or_higher_perm(perm_str)

Parameters perm_str – str Permission, read, write or changePermission.

Returns

Subj that have perm equal or higher than perm_str.

Since the lowest permission a subject can have is read, passing read will return all sub-
jects.

Return type set of str

dump()
Dump the current state to debug level log.

is_public()
Returns:

bool: True if AccessPolicy allows public read.

is_private()
Returns:

bool: True if AccessPolicy does not grant access to any subjects.

is_empty()
Returns:

bool: True if AccessPolicy does not grant access to any subjects.

are_equivalent_pyxb(access_pyxb)

142 Chapter 4. Contents

DataONE Python Products

Parameters access_pyxb – AccessPolicy PyXB object with which to compare.

Returns

True if access_pyxb grants the exact same permissions as the wrapped AccessPolicy.

Differences in how the permissions are represented in the XML docs are handled by trans-
forming to normalized lists before comparison.

Return type bool

are_equivalent_xml(access_xml)

Parameters access_xml – AccessPolicy XML doc with which to compare.

Returns

True if access_xml grants the exact same permissions as the wrapped AccessPolicy.

Differences in how the permissions are represented in the XML docs are handled by trans-
forming to normalized lists before comparison.

Return type bool

subj_has_perm(subj_str, perm_str)
Returns:

bool: True if subj_str has perm equal to or higher than perm_str.

clear()
Remove AccessPolicy.

Only the rightsHolder set in the SystemMetadata will be able to access the object unless new perms are
added after calling this method.

add_public_read()
Add public public read perm.

Add an allow rule with a read permission for the symbolic subject, public. It is a no no-op if any of
the existing rules already provide read or higher to public.

add_authenticated_read()
Add read perm for all authenticated subj.

Public read is removed if present.

add_verified_read()
Add read perm for all verified subj.

Public read is removed if present.

add_perm(subj_str, perm_str)
Add a permission for a subject.

Parameters

• subj_str – str Subject for which to add permission(s)

• perm_str – str Permission to add. Implicitly adds all lower permissions. E.g., write will
also add read.

remove_perm(subj_str, perm_str)
Remove permission from a subject.

Parameters

• subj_str – str Subject for which to remove permission(s)

4.5. DataONE Common Library for Python 143

DataONE Python Products

• perm_str – str Permission to remove. Implicitly removes all higher permissions. E.g.,
write will also remove changePermission if previously granted.

remove_subj(subj_str)
Remove all permissions for subject.

Parameters subj_str – str Subject for which to remove all permissions. Since subjects can only
be present in the AccessPolicy when they have one or more permissions, this removes the
subject itself as well.

The subject may still have access to the obj. E.g.:

• The obj has public access.

• The subj has indirect access by being in a group which has access.

• The subj has an equivalent subj that has access.

• The subj is set as the rightsHolder for the object.

d1_common.wrap.access_policy.update(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.get_normalized_pyxb(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.get_normalized_perm_list(access_pyxb, *args,
**kwargs)

d1_common.wrap.access_policy.get_highest_perm_str(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.get_effective_perm_list(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.get_subjects_with_equal_or_higher_perm(access_pyxb,
*args,
**kwargs)

d1_common.wrap.access_policy.dump(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.is_public(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.is_private(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.is_empty(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.are_equivalent_pyxb(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.are_equivalent_xml(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.subj_has_perm(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.clear(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.add_public_read(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.add_authenticated_read(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.add_verified_read(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.add_perm(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.remove_perm(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.remove_subj(access_pyxb, *args, **kwargs)

d1_common.wrap.access_policy.mk_func(func_name)

d1_common.wrap.access_policy.method_obj(self)
Update the wrapped AccessPolicy PyXB object with normalized and minimal rules representing current state.

144 Chapter 4. Contents

DataONE Python Products

d1_common.wrap.simple_xml module

Context manager for simple XML processing.

Example

with d1_common.wrap.simple_xml.wrap(my_xml_str) as xml_wrapper:
Read, modify and write the text in an XML element
text_str = xml.get_element_text('my_el')
xml.set_element_text('{} more text'.format(text_str)
Discard the wrapped XML and replace it with the modified XML. Calling get_xml()
is required because context managers cannot replace the object that was passed
to the manager, and strings are immutable. If the wrapped XML is needed later,
just store another reference to it.
my_xml_str = xml_wrapper.get_xml()

Notes

Typically, the DataONE Python stack, and any apps based on the stack, process XML using the PyXB bindings for
the DataONE XML types. However, in some rare cases, it is necessary to process XML without using PyXB, and this
wrapper provides some basic methods for such processing.

Uses include:

• Process XML that is not DataONE types, and so does not have PyXB binding.

• Process XML that is invalid in such a way that PyXB cannot parse or generate it.

• Process XML without causing xs:dateTime fields to be normalized to the UTC time zone (PyXB is based on the
XML DOM, which requires such normalization.)

• Generate intentionally invalid XML for DataONE types in order to test how MNs, CNs and other components
of the DataONE architecture handle and recover from invalid input.

• Speed up simple processing, when the performance overhead of converting the documents to and from PyXB
objects, with the schema validation and other processing that it entails, would be considered too high.

Usage:

• Methods that take el_name and el_idx operate on the element with index el_idx of elements with name
el_name. If el_idx is higher than the number of elements with name el_name, SimpleXMLWrapperEx-
ception is raised.

• Though this wrapper does not require XML to validate against the DataONE schemas, it does require that the
wrapped XML is well formed and it will only generate well formed XML.

• If it’s necessary to process XML that is not well formed, a library such as BeautifulSoup may be required.

• In some cases, it may be possible read or write XML that is not well formed by manipulating the XML directly
as a string before wrapping or after generating.

• This wrapper is based on the ElementTree module.

d1_common.wrap.simple_xml.wrap(xml_str)
Simple processing of XML.

class d1_common.wrap.simple_xml.SimpleXMLWrapper(xml_str)
Bases: object

Wrap an XML document and provide convenient methods for performing simple processing on it.

4.5. DataONE Common Library for Python 145

DataONE Python Products

Parameters xml_str – str XML document to read, write or modify.

parse_xml(xml_str)

get_xml(encoding=’unicode’)
Returns:

str : Current state of the wrapper as XML

get_pretty_xml(encoding=’unicode’)
Returns:

str : Current state of the wrapper as a pretty printed XML string.

get_xml_below_element(el_name, el_idx=0, encoding=’unicode’)

Parameters

• el_name – str Name of element that is the base of the branch to retrieve.

• el_idx – int Index of element to use as base in the event that there are multiple sibling
elements with the same name.

Returns XML fragment rooted at el.

Return type str

get_element_list_by_name(el_name)

Parameters el_name – str Name of element for which to search.

Returns

List of elements with name el_name.

If there are no matching elements, an empty list is returned.

Return type list

get_element_list_by_attr_key(attr_key)

Parameters attr_key – str Name of attribute for which to search

Returns

List of elements containing an attribute key named attr_key.

If there are no matching elements, an empty list is returned.

Return type list

get_element_by_xpath(xpath_str, namespaces=None)

Parameters xpath_str – str XPath matching the elements for which to search.

Returns

List of elements matching xpath_str.

If there are no matching elements, an empty list is returned.

Return type list

get_element_by_name(el_name, el_idx=0)

Parameters

• el_name – str Name of element to get.

146 Chapter 4. Contents

DataONE Python Products

• el_idx – int Index of element to use as base in the event that there are multiple sibling
elements with the same name.

Returns The selected element.

Return type element

get_element_by_attr_key(attr_key, el_idx=0)

Parameters

• attr_key – str Name of attribute for which to search

• el_idx – int Index of element to use as base in the event that there are multiple sibling
elements with the same name.

Returns Element containing an attribute key named attr_key.

get_element_text(el_name, el_idx=0)

Parameters

• el_name – str Name of element to use.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

Returns Text of the selected element.

Return type str

set_element_text(el_name, el_text, el_idx=0)

Parameters

• el_name – str Name of element to update.

• el_text – str Text to set for element.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

get_element_text_by_attr_key(attr_key, el_idx=0)

Parameters

• attr_key – str Name of attribute for which to search

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

Returns Text of the selected element.

Return type str

set_element_text_by_attr_key(attr_key, el_text, el_idx=0)

Parameters

• attr_key – str Name of attribute for which to search

• el_text – str Text to set for element.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

get_attr_value(attr_key, el_idx=0)
Return the value of the selected attribute in the selected element.

4.5. DataONE Common Library for Python 147

DataONE Python Products

Parameters

• attr_key – str Name of attribute for which to search

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

Returns Value of the selected attribute in the selected element.

Return type str

set_attr_text(attr_key, attr_val, el_idx=0)
Set the value of the selected attribute of the selected element.

Parameters

• attr_key – str Name of attribute for which to search

• attr_val – str Text to set for the attribute.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

get_element_dt(el_name, tz=None, el_idx=0)
Return the text of the selected element as a datetime.datetime object.

The element text must be a ISO8601 formatted datetime

Parameters

• el_name – str Name of element to use.

• tz – datetime.tzinfo Timezone in which to return the datetime.

– Without a timezone, other contextual information is required in order to determine the
exact represented time.

– If dt has timezone: The tz parameter is ignored.

– If dt is naive (without timezone): The timezone is set to tz.

– tz=None: Prevent naive dt from being set to a timezone. Without a timezone, other
contextual information is required in order to determine the exact represented time.

– tz=d1_common.date_time.UTC(): Set naive dt to UTC.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

Returns datetime.datetime

set_element_dt(el_name, dt, tz=None, el_idx=0)
Set the text of the selected element to an ISO8601 formatted datetime.

Parameters

• el_name – str Name of element to update.

• dt – datetime.datetime Date and time to set

• tz – datetime.tzinfo Timezone to set

– Without a timezone, other contextual information is required in order to determine the
exact represented time.

– If dt has timezone: The tz parameter is ignored.

– If dt is naive (without timezone): The timezone is set to tz.

148 Chapter 4. Contents

DataONE Python Products

– tz=None: Prevent naive dt from being set to a timezone. Without a timezone, other
contextual information is required in order to determine the exact represented time.

– tz=d1_common.date_time.UTC(): Set naive dt to UTC.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

remove_children(el_name, el_idx=0)
Remove any child elements from element.

Parameters

• el_name – str Name of element to update.

• el_idx – int Index of element to use in the event that there are multiple sibling elements
with the same name.

replace_by_etree(root_el, el_idx=0)
Replace element.

Select element that has the same name as root_el, then replace the selected element with root_el

root_el can be a single element or the root of an element tree.

Parameters root_el – element New element that will replace the existing element.

replace_by_xml(xml_str, el_idx=0)
Replace element.

Select element that has the same name as xml_str, then replace the selected element with xml_str

• xml_str must have a single element in the root.

• The root element in xml_str can have an arbitrary number of children.

Parameters xml_str – str New element that will replace the existing element.

exception d1_common.wrap.simple_xml.SimpleXMLWrapperException
Bases: Exception

Submodules

d1_common.bagit module

Create and validate BagIt Data Packages / zip file archives.

See also:

• https://en.wikipedia.org/wiki/BagIt

• https://tools.ietf.org/html/draft-kunze-bagit-05

• https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNPackage.getPackage

• https://releases.dataone.org/online/api-documentation-v2.0/design/DataPackage.html

d1_common.bagit.validate_bagit_file(bagit_path)
Check if a BagIt file is valid.

Raises ServiceFailure – If the BagIt zip archive file fails any of the following checks:

- Is a valid zip file. - The tag and manifest files are correctly formatted. - Contains all the files
listed in the manifests. - The file checksums match the manifests.

4.5. DataONE Common Library for Python 149

https://en.wikipedia.org/wiki/BagIt
https://tools.ietf.org/html/draft-kunze-bagit-05
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNPackage.getPackage
https://releases.dataone.org/online/api-documentation-v2.0/design/DataPackage.html

DataONE Python Products

d1_common.bagit.create_bagit_stream(dir_name, payload_info_list)
Create a stream containing a BagIt zip archive.

Parameters

• dir_name – str The name of the root directory in the zip file, under which all the files are
placed (avoids “zip bombs”).

• payload_info_list – list List of payload_info_dict, each dict describing a file.

– keys: pid, filename, iter, checksum, checksum_algorithm

– If the filename is None, the pid is used for the filename.

d1_common.checksum module

Utilities for handling checksums.

Warning: The MD5 checksum algorithm is not cryptographically secure. It’s possible to craft a sequence of bytes
that yields a predetermined checksum.

d1_common.checksum.create_checksum_object_from_stream(f, algorithm=’SHA-1’)
Calculate the checksum of a stream.

Parameters

• f – file-like object Only requirement is a read() method that returns bytes.

• algorithm – str Checksum algorithm, MD5 or SHA1 / SHA-1.

Returns Populated Checksum PyXB object.

d1_common.checksum.create_checksum_object_from_iterator(itr, algorithm=’SHA-1’)
Calculate the checksum of an iterator.

Parameters

• itr – iterable Object which supports the iterator protocol.

• algorithm – str Checksum algorithm, MD5 or SHA1 / SHA-1.

Returns Populated Checksum PyXB object.

d1_common.checksum.create_checksum_object_from_bytes(b, algorithm=’SHA-1’)
Calculate the checksum of bytes.

Warning: This method requires the entire object to be buffered in (virtual) memory, which should normally
be avoided in production code.

Parameters

• b – bytes Raw bytes

• algorithm – str Checksum algorithm, MD5 or SHA1 / SHA-1.

Returns Populated PyXB Checksum object.

150 Chapter 4. Contents

DataONE Python Products

d1_common.checksum.calculate_checksum_on_stream(f, algorithm=’SHA-1’,
chunk_size=1048576)

Calculate the checksum of a stream.

Parameters

• f – file-like object Only requirement is a read() method that returns bytes.

• algorithm – str Checksum algorithm, MD5 or SHA1 / SHA-1.

• chunk_size – int Number of bytes to read from the file and add to the checksum at a time.

Returns Checksum as a hexadecimal string, with length decided by the algorithm.

Return type str

d1_common.checksum.calculate_checksum_on_iterator(itr, algorithm=’SHA-1’)
Calculate the checksum of an iterator.

Parameters

• itr – iterable Object which supports the iterator protocol.

• algorithm – str Checksum algorithm, MD5 or SHA1 / SHA-1.

Returns Checksum as a hexadecimal string, with length decided by the algorithm.

Return type str

d1_common.checksum.calculate_checksum_on_bytes(b, algorithm=’SHA-1’)
Calculate the checksum of bytes.

Warning: This method requires the entire object to be buffered in (virtual) memory, which should normally be
avoided in production code.

Parameters

• b – bytes Raw bytes

• algorithm – str Checksum algorithm, MD5 or SHA1 / SHA-1.

Returns Checksum as a hexadecimal string, with length decided by the algorithm.

Return type str

d1_common.checksum.are_checksums_equal(checksum_a_pyxb, checksum_b_pyxb)
Determine if checksums are equal.

Parameters checksum_a_pyxb, checksum_b_pyxb – PyXB Checksum objects to compare.

Returns

bool

• True: The checksums contain the same hexadecimal values calculated with the same
algorithm. Identical checksums guarantee (for all practical purposes) that the checksums
were calculated from the same sequence of bytes.

• False: The checksums were calculated with the same algorithm but the hexadecimal val-
ues are different.

Raises ValueError – The checksums were calculated with different algorithms, hence cannot be
compared.

d1_common.checksum.get_checksum_calculator_by_dataone_designator(dataone_algorithm_name)
Get a checksum calculator.

Parameters dataone_algorithm_name – str Checksum algorithm, MD5 or SHA1 / SHA-1.

4.5. DataONE Common Library for Python 151

DataONE Python Products

Returns

Checksum calculator from the hashlib library

Object that supports update(arg), digest(), hexdigest() and copy().

d1_common.checksum.get_default_checksum_algorithm()
Get the default checksum algorithm.

Returns

Checksum algorithm that is supported by DataONE, the DataONE Python stack and is in com-
mon use within the DataONE federation. Currently, SHA-1.

The returned string can be passed as the algorithm_str to the functions in this module.

Return type str

d1_common.checksum.is_supported_algorithm(algorithm_str)
Determine if string is the name of a supported checksum algorithm.

Parameters algorithm_str – str String that may or may not contain the name of a supported algo-
rithm.

Returns

bool

• True: The string contains the name of a supported algorithm and can be passed as the
algorithm_str to the functions in this module.

• False: The string is not a supported algorithm.

d1_common.checksum.get_supported_algorithms()
Get a list of the checksum algorithms that are supported by the DataONE Python stack.

Returns List of algorithms that are supported by the DataONE Python stack and can be passed to as
the algorithm_str to the functions in this module.

Return type list

d1_common.checksum.format_checksum(checksum_pyxb)
Create string representation of a PyXB Checksum object.

Parameters PyXB Checksum object

Returns Combined hexadecimal value and algorithm name.

Return type str

d1_common.const module

System wide constants for the Python DataONE stack.

d1_common.date_time module

Utilities for handling date-times in DataONE.

Timezones (tz):

• A datetime object can be tz-naive or tz-aware.

152 Chapter 4. Contents

DataONE Python Products

• tz-naive: The datetime does not include timezone information. As such, it does not by itself fully specify an
absolute point in time. The exact point in time depends on in which timezone the time is specified, and the
information may not be accessible to the end user. However, as timezones go from GMT-12 to GMT+14, and
when including a possible daylight saving offset of 1 hour, a tz-naive datetime will always be within 14 hours
of the real time.

• tz-aware: The datetime includes a timezone, specified as an abbreviation or as a hour and minute offset. It
specifies an exact point in time.

class d1_common.date_time.UTC
Bases: datetime.tzinfo

datetime.tzinfo based class that represents the UTC timezone.

Date-times in DataONE should have timezone information that is fixed to UTC. A naive Python datetime can
be fixed to UTC by attaching it to this datetime.tzinfo based class.

utcoffset(dt)
Returns:

UTC offset of zero

tzname(dt=None)
Returns:

str: “UTC”

dst(dt=None)
Args: dt: Ignored.

Returns: timedelta(0), meaning that daylight saving is never in effect.

class d1_common.date_time.FixedOffset(name, offset_hours=0, offset_minutes=0)
Bases: datetime.tzinfo

datetime.tzinfo derived class that represents any timezone as fixed offset in minutes east of UTC.

• Date-times in DataONE should have timezone information that is fixed to UTC. A naive Python datetime
can be fixed to UTC by attaching it to this datetime.tzinfo based class.

• See the UTC class for representing timezone in UTC.

__init__(name, offset_hours=0, offset_minutes=0)
Args: name: str Name of the timezone this offset represents.

offset_hours: Number of hours offset from UTC.

offset_minutes: Number of minutes offset from UTC.

utcoffset(dt)
Args: dt: Ignored.

Returns The time offset from UTC.

Return type datetime.timedelta

tzname(dt)
Args: dt: Ignored.

Returns: Name of the timezone this offset represents.

dst(dt=None)
Args: dt: Ignored.

Returns: timedelta(0), meaning that daylight saving is never in effect.

4.5. DataONE Common Library for Python 153

DataONE Python Products

d1_common.date_time.is_valid_iso8601(iso8601_str)
Determine if string is a valid ISO 8601 date, time, or datetime.

Parameters iso8601_str – str String to check.

Returns True if string is a valid ISO 8601 date, time, or datetime.

Return type bool

d1_common.date_time.has_tz(dt)
Determine if datetime has timezone (is not naive)

Parameters dt – datetime

Returns

bool

• True: datetime is tz-aware.

• False: datetime is tz-naive.

d1_common.date_time.is_utc(dt)
Determine if datetime has timezone and the timezone is in UTC.

Parameters dt – datetime

Returns True if datetime has timezone and the timezone is in UTC

Return type bool

d1_common.date_time.are_equal(a_dt, b_dt, round_sec=1)
Determine if two datetimes are equal with fuzz factor.

A naive datetime (no timezone information) is assumed to be in in UTC.

Parameters

• a_dt – datetime Timestamp to compare.

• b_dt – datetime Timestamp to compare.

• round_sec – int or float Round the timestamps to the closest second divisible by this value
before comparing them.

E.g.:

– n_round_sec = 0.1: nearest 10th of a second.

– n_round_sec = 1: nearest second.

– n_round_sec = 30: nearest half minute.

Timestamps may lose resolution or otherwise change slightly as they go through various
transformations and storage systems. This again may cause timestamps that have been pro-
cessed in different systems to fail an exact equality compare even if they were initially the
same timestamp. This rounding avoids such problems as long as the error introduced to
the original timestamp is not higher than the rounding value. Of course, the rounding also
causes a loss in resolution in the values compared, so should be kept as low as possible. The
default value of 1 second should be a good tradeoff in most cases.

Returns

bool

• True: If the two datetimes are equal after being rounded by round_sec.

154 Chapter 4. Contents

DataONE Python Products

d1_common.date_time.ts_from_dt(dt)
Convert datetime to POSIX timestamp.

Parameters dt – datetime

• Timezone aware datetime: The tz is included and adjusted to UTC (since timestamp is
always in UTC).

• Naive datetime (no timezone information): Assumed to be in UTC.

Returns

int or float

• The number of seconds since Midnight, January 1st, 1970, UTC.

• If dt contains sub-second values, the returned value will be a float with fraction.

See also:

dt_from_ts() for the reverse operation.

d1_common.date_time.dt_from_ts(ts, tz=None)
Convert POSIX timestamp to a timezone aware datetime.

Parameters

• ts – int or float, optionally with fraction The number of seconds since Midnight, January
1st, 1970, UTC.

• tz – datetime.tzinfo - If supplied: The dt is adjusted to that tz before being returned. It does
not

affect the ts, which is always in UTC.

– If not supplied: the dt is returned in UTC.

Returns

datetime Timezone aware datetime, in UTC.

See also:

ts_from_dt() for the reverse operation.

d1_common.date_time.http_datetime_str_from_dt(dt)
Format datetime to HTTP Full Date format.

Parameters dt – datetime

• tz-aware: Used in the formatted string.

• tz-naive: Assumed to be in UTC.

Returns

str The returned format is a is fixed-length subset of that defined by RFC 1123 and is the
preferred format for use in the HTTP Date header. E.g.:

Sat, 02 Jan 1999 03:04:05 GMT

See also:

• http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1

4.5. DataONE Common Library for Python 155

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1

DataONE Python Products

d1_common.date_time.xsd_datetime_str_from_dt(dt)
Format datetime to a xs:dateTime string.

Parameters dt – datetime

• tz-aware: Used in the formatted string.

• tz-naive: Assumed to be in UTC.

Returns

str The returned format can be used as the date in xs:dateTime XML elements. It will be on the
form YYYY-MM-DDTHH:MM:SS.mmm+00:00.

d1_common.date_time.dt_from_http_datetime_str(http_full_datetime)
Parse HTTP Full Date formats and return as datetime.

Parameters http_full_datetime – str Each of the allowed formats are supported:

• Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

• Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

• Sun Nov 6 08:49:37 1994 ; ANSI C’s asctime() format

HTTP Full Dates are always in UTC.

Returns

datetime The returned datetime is always timezone aware and in UTC.

See also:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1

d1_common.date_time.dt_from_iso8601_str(iso8601_str)
Parse ISO8601 formatted datetime string.

Parameters iso8601_str – str ISO 8601 formatted datetime.

• tz-aware: Used in the formatted string.

• tz-naive: Assumed to be in UTC.

• Partial strings are accepted as long as they’re on the general form. Everything from just
2014 to 2006-10-20T15:34:56.123+02:30 will work. The sections that are not
present in the string are set to zero in the returned datetime.

• See test_iso8601.py in the iso8601 package for examples.

Returns

datetime The returned datetime is always timezone aware and in UTC.

Raises d1_common.date_time.iso8601.ParseError – If ‘‘iso8601_string‘ is not on the
general form of ISO 8601.

d1_common.date_time.normalize_datetime_to_utc(dt)
Adjust datetime to UTC.

Apply the timezone offset to the datetime and set the timezone to UTC.

This is a no-op if the datetime is already in UTC.

Parameters dt – datetime - tz-aware: Used in the formatted string. - tz-naive: Assumed to be in
UTC.

Returns

156 Chapter 4. Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1

DataONE Python Products

datetime The returned datetime is always timezone aware and in UTC.

Notes

This forces a new object to be returned, which fixes an issue with serialization to XML in PyXB. PyXB uses a
mixin together with datetime to handle the XML xs:dateTime. That type keeps track of timezone information
included in the original XML doc, which conflicts if we return it here as part of a datetime mixin.

See also:

cast_naive_datetime_to_tz()

d1_common.date_time.cast_naive_datetime_to_tz(dt, tz=UTC)
If datetime is tz-naive, set it to tz. If datetime is tz-aware, return it unmodified.

Parameters

• dt – datetime tz-naive or tz-aware datetime.

• tz – datetime.tzinfo The timezone to which to adjust tz-naive datetime.

Returns

datetime tz-aware datetime.

Warning: This will change the actual moment in time that is represented if the datetime is naive and
represents a date and time not in tz.

See also:

normalize_datetime_to_utc()

d1_common.date_time.strip_timezone(dt)
Make datetime tz-naive by stripping away any timezone information.

Parameters

• dt – datetime

• - tz-aware – Used in the formatted string.

• - tz-naive – Returned unchanged.

Returns

datetime tz-naive datetime.

d1_common.date_time.utc_now()
Returns: tz-aware datetime: The current local date and time adjusted to the UTC timezone.

Notes

• Local time is retrieved from the local machine clock.

• Relies on correctly set timezone on the local machine.

• Relies on current tables for Daylight Saving periods.

• Local machine timezone can be checked with: $ date +'%z %Z'.

4.5. DataONE Common Library for Python 157

DataONE Python Products

d1_common.date_time.date_utc_now_iso()
Returns:

str [The current local date as an ISO 8601 string in the UTC timezone] Does not include the time.

d1_common.date_time.local_now()
Returns:

tz-aware datetime : The current local date and time in the local timezone

d1_common.date_time.local_now_iso()
Returns:

str : The current local date and time as an ISO 8601 string in the local timezone

d1_common.date_time.to_iso8601_utc(dt)
Args: dt: datetime.

Returns: str: ISO 8601 string in the UTC timezone

d1_common.date_time.create_utc_datetime(*datetime_parts)
Create a datetime with timezone set to UTC.

Parameters tuple of int – year, month, day, hour, minute, second, microsecond

Returns datetime

d1_common.date_time.round_to_nearest(dt, n_round_sec=1.0)
Round datetime up or down to nearest divisor.

Round datetime up or down to nearest number of seconds that divides evenly by the divisor.

Any timezone is preserved but ignored in the rounding.

Parameters

• dt – datetime

• n_round_sec – int or float Divisor for rounding

Examples

• n_round_sec = 0.1: nearest 10th of a second.

• n_round_sec = 1: nearest second.

• n_round_sec = 30: nearest half minute.

d1_common.env module

Utilities for handling DataONE environments.

d1_common.env.get_d1_env_keys()
Get the DataONE env dict keys in preferred order.

Returns DataONE env dict keys

Return type list

d1_common.env.get_d1_env(env_key)
Get the values required in order to connect to a DataONE environment.

Returns Values required in order to connect to a DataONE environment.

158 Chapter 4. Contents

DataONE Python Products

Return type dict

d1_common.env.get_d1_env_by_base_url(cn_base_url)
Given the BaseURL for a CN, return the DataONE environment dict for the CN’s environemnt.

d1_common.logging_context module

Context manager that enables temporary changes in logging level.

Source: https://docs.python.org/2/howto/logging-cookbook.html

class d1_common.logging_context.LoggingContext(logger, level=None, handler=None,
close=True)

Bases: object

Logging Context Manager.

__init__(logger, level=None, handler=None, close=True)
Args: logger: logger Logger for which to change the logging level.

level: Temporary logging level.

handler: Optional logging handler to use. Supplying a new handler allows temporarily changing the
logging format as well.

close: Automatically close handler (if supplied).

d1_common.multipart module

Utilities for handling MIME Multipart documents.

d1_common.multipart.parse_response(response, encoding=’utf-8’)
Parse a multipart Requests.Response into a tuple of BodyPart objects.

Parameters

• response – Requests.Response

• encoding – The parser will assume that any text in the HTML body is encoded with this
encoding when decoding it for use in the text attribute.

Returns

tuple of BodyPart Members: headers (CaseInsensitiveDict), content (bytes), text (Unicode),
encoding (str).

d1_common.multipart.parse_str(mmp_bytes, content_type, encoding=’utf-8’)
Parse multipart document bytes into a tuple of BodyPart objects.

Parameters

• mmp_bytes – bytes Multipart document.

• content_type – str Must be on the form, multipart/form-data;
boundary=<BOUNDARY>, where <BOUNDARY> is the string that separates the
parts of the multipart document in mmp_bytes. In HTTP requests and responses, it is
passed in the Content-Type header.

• encoding – str The coding used for the text in the HTML body.

Returns

4.5. DataONE Common Library for Python 159

https://docs.python.org/2/howto/logging-cookbook.html

DataONE Python Products

tuple of BodyPart Members: headers (CaseInsensitiveDict), content (bytes), text (Unicode),
encoding (str).

d1_common.multipart.normalize(body_part_tup)
Normalize a tuple of BodyPart objects to a string.

Normalization is done by sorting the body_parts by the Content- Disposition headers, which is typically on the
form, form-data; name="name_of_part.

d1_common.multipart.is_multipart(header_dict)

Parameters header_dict – CaseInsensitiveDict

Returns True if header_dict has a Content-Type key (case insensitive) with value that begins
with ‘multipart’.

Return type bool

d1_common.node module

Utilities for handling the DataONE Node and NodeList types.

d1_common.node.pyxb_to_dict(node_list_pyxb)

Returns Representation of node_list_pyxb, keyed on the Node identifier (urn:node:*).

Return type dict

Example:

{
u'urn:node:ARCTIC': {

'base_url': u'https://arcticdata.io/metacat/d1/mn',
'description': u'The US National Science Foundation...',
'name': u'Arctic Data Center',
'ping': None,
'replicate': 0,
'state': u'up',
'synchronize': 1,
'type': u'mn'

},
u'urn:node:BCODMO': {

'base_url': u'https://www.bco-dmo.org/d1/mn',
'description': u'Biological and Chemical Oceanography Data...',
'name': u'Biological and Chemical Oceanography Data...',
'ping': None,
'replicate': 0,
'state': u'up',
'synchronize': 1,
'type': u'mn'

},
}

d1_common.object_format module

d1_common.replication_policy module

Utilities for handling the DataONE ReplicationPolicy type.

160 Chapter 4. Contents

DataONE Python Products

The Replication Policy is an optional section of the System Metadata which may be used to enable or disable replica-
tion, set the desired number of replicas and specify remote MNs to either prefer or block as replication targets.

Examples:

ReplicationPolicy:

<replicationPolicy replicationAllowed="true" numberReplicas="3">
<!--Zero or more repetitions:-->
<preferredMemberNode>node1</preferredMemberNode>
<preferredMemberNode>node2</preferredMemberNode>
<preferredMemberNode>node3</preferredMemberNode>
<!--Zero or more repetitions:-->
<blockedMemberNode>node4</blockedMemberNode>
<blockedMemberNode>node5</blockedMemberNode>

</replicationPolicy>

d1_common.replication_policy.has_replication_policy(sysmeta_pyxb)
Args: sysmeta_pyxb: SystemMetadata PyXB object.

Returns: bool: True if SystemMetadata includes the optional ReplicationPolicy section.

d1_common.replication_policy.sysmeta_add_preferred(sysmeta_pyxb, node_urn)
Add a remote Member Node to the list of preferred replication targets to this System Metadata object.

Also remove the target MN from the list of blocked Member Nodes if present.

If the target MN is already in the preferred list and not in the blocked list, this function is a no-op.

Parameters

• sysmeta_pyxb – SystemMetadata PyXB object. System Metadata in which to add the pre-
ferred replication target.

If the System Metadata does not already have a Replication Policy, a default replication
policy which enables replication is added and populated with the preferred replication target.

• node_urn –

str Node URN of the remote MN that will be added. On the form

urn:node:MyMemberNode.

d1_common.replication_policy.sysmeta_add_blocked(sysmeta_pyxb, node_urn)
Add a remote Member Node to the list of blocked replication targets to this System Metadata object.

The blocked node will not be considered a possible replication target for the associated System Metadata.

Also remove the target MN from the list of preferred Member Nodes if present.

If the target MN is already in the blocked list and not in the preferred list, this function is a no-op.

Parameters

• sysmeta_pyxb – SystemMetadata PyXB object. System Metadata in which to add the
blocked replication target.

If the System Metadata does not already have a Replication Policy, a default replication
policy which enables replication is added and then populated with the blocked replication
target.

• node_urn – str Node URN of the remote MN that will be added. On the form
urn:node:MyMemberNode.

4.5. DataONE Common Library for Python 161

DataONE Python Products

d1_common.replication_policy.sysmeta_set_default_rp(sysmeta_pyxb)
Set a default, empty, Replication Policy.

This will clear any existing Replication Policy in the System Metadata.

The default Replication Policy disables replication and sets number of replicas to 0.

Parameters sysmeta_pyxb – SystemMetadata PyXB object. System Metadata in which to set a
default Replication Policy.

d1_common.replication_policy.normalize(rp_pyxb)
Normalize a ReplicationPolicy PyXB type in place.

The preferred and blocked lists are sorted alphabetically. As blocked nodes override preferred nodes, and any
node present in both lists is removed from the preferred list.

Parameters rp_pyxb – ReplicationPolicy PyXB object The object will be normalized in place.

d1_common.replication_policy.is_preferred(rp_pyxb, node_urn)

Parameters

• rp_pyxb – ReplicationPolicy PyXB object The object will be normalized in place.

• node_urn – str Node URN of the remote MN for which to check preference.

Returns

True if node_urn is a preferred replica target.

As blocked nodes override preferred nodes, return False if node_urn is in both lists.

Return type bool

d1_common.replication_policy.is_blocked(rp_pyxb, node_urn)

Parameters

• rp_pyxb – ReplicationPolicy PyXB object The object will be normalized in place.

• node_urn – str Node URN of the remote MN for which to check preference.

Returns

True if node_urn is a blocked replica target.

As blocked nodes override preferred nodes, return True if node_urn is in both lists.

Return type bool

d1_common.replication_policy.are_equivalent_pyxb(a_pyxb, b_pyxb)
Check if two ReplicationPolicy objects are semantically equivalent.

The ReplicationPolicy objects are normalized before comparison.

Parameters a_pyxb, b_pyxb – ReplicationPolicy PyXB objects to compare

Returns True if the resulting policies for the two objects are semantically equivalent.

Return type bool

d1_common.replication_policy.are_equivalent_xml(a_xml, b_xml)
Check if two ReplicationPolicy XML docs are semantically equivalent.

The ReplicationPolicy XML docs are normalized before comparison.

Parameters a_xml, b_xml – ReplicationPolicy XML docs to compare

Returns True if the resulting policies for the two objects are semantically equivalent.

162 Chapter 4. Contents

DataONE Python Products

Return type bool

d1_common.replication_policy.add_preferred(rp_pyxb, node_urn)
Add a remote Member Node to the list of preferred replication targets.

Also remove the target MN from the list of blocked Member Nodes if present.

If the target MN is already in the preferred list and not in the blocked list, this function is a no-op.

Parameters

• rp_pyxb – SystemMetadata PyXB object. Replication Policy in which to add the preferred
replication target.

• node_urn – str Node URN of the remote MN that will be added. On the form
urn:node:MyMemberNode.

d1_common.replication_policy.add_blocked(rp_pyxb, node_urn)
Add a remote Member Node to the list of blocked replication targets.

Also remove the target MN from the list of preferred Member Nodes if present.

If the target MN is already in the blocked list and not in the preferred list, this function is a no-op.

Parameters

• rp_pyxb – SystemMetadata PyXB object. Replication Policy in which to add the blocked
replication target.

• node_urn – str Node URN of the remote MN that will be added. On the form
urn:node:MyMemberNode.

d1_common.replication_policy.pyxb_to_dict(rp_pyxb)
Convert ReplicationPolicy PyXB object to a normalized dict.

Parameters rp_pyxb – ReplicationPolicy to convert.

Returns Replication Policy as normalized dict.

Return type dict

Example:

{
'allowed': True,
'num': 3,
'blockedMemberNode': {'urn:node:NODE1', 'urn:node:NODE2', 'urn:node:NODE3'},
'preferredMemberNode': {'urn:node:NODE4', 'urn:node:NODE5'},

}

d1_common.replication_policy.dict_to_pyxb(rp_dict)
Convert dict to ReplicationPolicy PyXB object.

Parameters rp_dict – Native Python structure representing a Replication Policy.

Example:

{
'allowed': True,
'num': 3,
'blockedMemberNode': {'urn:node:NODE1', 'urn:node:NODE2', 'urn:node:NODE3'},
'preferredMemberNode': {'urn:node:NODE4', 'urn:node:NODE5'},

}

4.5. DataONE Common Library for Python 163

DataONE Python Products

Returns ReplicationPolicy PyXB object.

d1_common.resource_map module

Read and write DataONE OAI-ORE Resource Maps.

DataONE supports a system that allows relationships between Science Objects to be described. These relationships
are stored in OAI-ORE Resource Maps.

This module provides functionality for the most common use cases when parsing and generating Resource Maps for
use in DataONE.

For more information about how Resource Maps are used in DataONE, see:

https://releases.dataone.org/online/api-documentation-v2.0.1/design/DataPackage.html

Common RDF-XML namespaces:

dc: <http://purl.org/dc/elements/1.1/>
foaf: <http://xmlns.com/foaf/0.1/>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns# >
rdfs1: <http://www.w3.org/2001/01/rdf-schema# >
ore: <http://www.openarchives.org/ore/terms/>
dcterms: <http://purl.org/dc/terms/>
cito: <http://purl.org/spar/cito/>

Note: In order for Resource Maps to be recognized and indexed by DataONE, they must be created with formatId
set to http://www.openarchives.org/ore/terms.

d1_common.resource_map.createSimpleResourceMap(ore_pid, scimeta_pid, sciobj_pid_list)
Create a simple OAI-ORE Resource Map with one Science Metadata document and any number of Science Data
objects.

This creates a document that establishes an association between a Science Metadata object and any number of
Science Data objects. The Science Metadata object contains information that is indexed by DataONE, allowing
both the Science Metadata and the Science Data objects to be discoverable in DataONE Search. In search
results, the objects will appear together and can be downloaded as a single package.

Parameters

• ore_pid – str Persistent Identifier (PID) to use for the new Resource Map

• scimeta_pid – str PID for an object that will be listed as the Science Metadata that is de-
scribing the Science Data objects.

• sciobj_pid_list – list of str List of PIDs that will be listed as the Science Data objects that
are being described by the Science Metadata.

Returns OAI-ORE Resource Map

Return type ResourceMap

d1_common.resource_map.createResourceMapFromStream(in_stream,
base_url=’https://cn.dataone.org/cn’)

Create a simple OAI-ORE Resource Map with one Science Metadata document and any number of Science Data
objects, using a stream of PIDs.

Parameters

164 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0.1/design/DataPackage.html

DataONE Python Products

• in_stream – The first non-blank line is the PID of the resource map itself. Second line is
the science metadata PID and remaining lines are science data PIDs.

Example stream contents:

PID_ORE_value
sci_meta_pid_value
data_pid_1
data_pid_2
data_pid_3

• base_url – str Root of the DataONE environment in which the Resource Map will be used.

Returns OAI-ORE Resource Map

Return type ResourceMap

class d1_common.resource_map.ResourceMap(ore_pid=None, scimeta_pid=None,
scidata_pid_list=None,
base_url=’https://cn.dataone.org/cn’,
api_major=2, ore_software_id=’DataONE.org
Python ITK 3.4.0’, *args, **kwargs)

Bases: rdflib.graph.ConjunctiveGraph

OAI-ORE Resource Map.

__init__(ore_pid=None, scimeta_pid=None, scidata_pid_list=None,
base_url=’https://cn.dataone.org/cn’, api_major=2, ore_software_id=’DataONE.org
Python ITK 3.4.0’, *args, **kwargs)

Create a OAI-ORE Resource Map.

Parameters

• ore_pid – str Persistent Identifier (PID) to use for the new Resource Map

• scimeta_pid – str PID for an object that will be listed as the Science Metadata that is
describing the Science Data objects.

• scidata_pid_list – list of str List of PIDs that will be listed as the Science Data objects
that are being described by the Science Metadata.

• base_url – str Root of the DataONE environment in which the Resource Map will be used.

• api_major – The DataONE API version to use for the the DataONE Resolve API. Clients
call the Resolve API to get a list of download locations for the objects in the Resource
Map.

• ore_software_id – str Optional string which identifies the software that was used for cre-
ating the Resource Map. If specified, should be on the form of a UserAgent string.

• args and kwargs – Optional arguments forwarded to rdflib.ConjunctiveGraph.__init__().

initialize(pid, ore_software_id=’DataONE.org Python ITK 3.4.0’)
Create the basic ORE document structure.

serialize_to_transport(doc_format=’xml’, *args, **kwargs)
Serialize ResourceMap to UTF-8 encoded XML document.

Parameters

• doc_format – str One of: xml, n3, turtle, nt, pretty-xml, trix, trig and
nquads.

• args and kwargs – Optional arguments forwarded to rdflib.ConjunctiveGraph.serialize().

4.5. DataONE Common Library for Python 165

DataONE Python Products

Returns UTF-8 encoded XML doc.

Return type bytes

Note: Only the default, “xml”, is automatically indexed by DataONE.

serialize_to_display(doc_format=’pretty-xml’, *args, **kwargs)
Serialize ResourceMap to an XML doc that is pretty printed for display.

Parameters

• doc_format – str One of: xml, n3, turtle, nt, pretty-xml, trix, trig and
nquads.

• args and kwargs – Optional arguments forwarded to rdflib.ConjunctiveGraph.serialize().

Returns Pretty printed Resource Map XML doc

Return type str

Note: Only the default, “xml”, is automatically indexed by DataONE.

deserialize(*args, **kwargs)
Deserialize Resource Map XML doc.

The source is specified using one of source, location, file or data.

Parameters

• source – InputSource, file-like object, or string In the case of a string the string is the
location of the source.

• location – str String indicating the relative or absolute URL of the source. Graph‘‘s abso-
lutize method is used if a relative location is specified.

• file – file-like object

• data – str The document to be parsed.

• format – str Used if format can not be determined from source. Defaults to rdf/xml.
Format support can be extended with plugins.

Built-in: xml, n3, nt, trix, rdfa

• publicID – str Logical URI to use as the document base. If None specified the document
location is used (at least in the case where there is a document location).

Raises xml.sax.SAXException based exception – On parse error.

getAggregation()
Returns:

str : URIRef of the Aggregation entity

getObjectByPid(pid)

Parameters pid – str

Returns URIRef of the entry identified by pid.

Return type str

166 Chapter 4. Contents

DataONE Python Products

addResource(pid)
Add a resource to the Resource Map.

Parameters pid – str

setDocuments(documenting_pid, documented_pid)
Add a CiTO, the Citation Typing Ontology, triple asserting that documenting_pid documents
documented_pid.

Adds assertion: documenting_pid cito:documents documented_pid

Parameters

• documenting_pid – str PID of a Science Object that documents documented_pid.

• documented_pid – str PID of a Science Object that is documented by
documenting_pid.

setDocumentedBy(documented_pid, documenting_pid)
Add a CiTO, the Citation Typing Ontology, triple asserting that documented_pid isDocumentedBy
documenting_pid.

Adds assertion: documented_pid cito:isDocumentedBy documenting_pid

Parameters

• documented_pid – str PID of a Science Object that is documented by
documenting_pid.

• documenting_pid – str PID of a Science Object that documents documented_pid.

addMetadataDocument(pid)
Add a Science Metadata document.

Parameters pid – str PID of a Science Metadata object.

addDataDocuments(scidata_pid_list, scimeta_pid=None)
Add Science Data object(s)

Parameters

• scidata_pid_list – list of str List of one or more PIDs of Science Data objects

• scimeta_pid – str PID of a Science Metadata object that documents the Science Data
objects.

getResourceMapPid()
Returns:

str : PID of the Resource Map itself.

getAllTriples()
Returns:

list of tuples : Each tuple holds a subject, predicate, object triple

getAllPredicates()
Returns: list of str: All unique predicates.

Notes

Equivalent SPARQL:

4.5. DataONE Common Library for Python 167

DataONE Python Products

SELECT DISTINCT ?p
WHERE {

?s ?p ?o .
}

getSubjectObjectsByPredicate(predicate)

Parameters predicate – str Predicate for which to return subject, object tuples.

Returns All subject/objects with predicate.

Return type list of subject, object tuples

Notes

Equivalent SPARQL:

SELECT DISTINCT ?s ?o
WHERE {{

?s {0} ?o .
}}

getAggregatedPids()
Returns: list of str: All aggregated PIDs.

Notes

Equivalent SPARQL:

SELECT ?pid
WHERE {

?s ore:aggregates ?o .
?o dcterms:identifier ?pid .

}

getAggregatedScienceMetadataPids()
Returns: list of str: All Science Metadata PIDs.

Notes

Equivalent SPARQL:

SELECT DISTINCT ?pid
WHERE {

?s ore:aggregates ?o .
?o cito:documents ?o2 .
?o dcterms:identifier ?pid .

}

getAggregatedScienceDataPids()
Returns: list of str: All Science Data PIDs.

168 Chapter 4. Contents

DataONE Python Products

Notes

Equivalent SPARQL:

SELECT DISTINCT ?pid
WHERE {

?s ore:aggregates ?o .
?o cito:isDocumentedBy ?o2 .
?o dcterms:identifier ?pid .

}

asGraphvizDot(stream)
Serialize the graph to .DOT format for ingestion in Graphviz.

Args: stream: file-like object open for writing that will receive the resulting document.

parseDoc(doc_str, format=’xml’)
Parse a OAI-ORE Resource Maps document.

See Also: rdflib.ConjunctiveGraph.parse for documentation on arguments.

d1_common.revision module

Utilities for working with revision / obsolescence chains.

d1_common.revision.get_identifiers(sysmeta_pyxb)
Get set of identifiers that provide revision context for SciObj.

Returns: tuple: PID, SID, OBSOLETES_PID, OBSOLETED_BY_PID

d1_common.revision.topological_sort(unsorted_dict)
Sort objects by dependency.

Sort a dict of obsoleting PID to obsoleted PID to a list of PIDs in order of obsolescence.

Parameters unsorted_dict – dict Dict that holds obsolescence information. Each key/value pair
establishes that the PID in key identifies an object that obsoletes an object identifies by the PID
in value.

Returns

sorted_list: A list of PIDs ordered so that all PIDs that obsolete an object are listed after
the object they obsolete.

unconnected_dict: A dict of PID to obsoleted PID of any objects that could not be added
to a revision chain. These items will have obsoletes PIDs that directly or indirectly reference a
PID that could not be sorted.

Return type tuple of sorted_list, unconnected_dict

Notes

obsoletes_dict is modified by the sort and on return holds any items that could not be sorted.

The sort works by repeatedly iterating over an unsorted list of PIDs and moving PIDs to the sorted list as they
become available. A PID is available to be moved to the sorted list if it does not obsolete a PID or if the PID it
obsoletes is already in the sorted list.

d1_common.revision.get_pids_in_revision_chain(client, did)
Args: client: d1_client.cnclient.CoordinatingNodeClient or d1_client.mnclient.MemberNodeClient.

4.5. DataONE Common Library for Python 169

DataONE Python Products

did [str] SID or a PID of any object in a revision chain.

Returns All PIDs in the chain. The returned list is in the same order as the chain. The initial PID
is typically obtained by resolving a SID. If the given PID is not in a chain, a list containing the
single object is returned.

Return type list of str

d1_common.revision.revision_list_to_obsoletes_dict(revision_list)
Args: revision_list: list of tuple tuple: PID, SID, OBSOLETES_PID, OBSOLETED_BY_PID.

Returns: dict: Dict of obsoleted PID to obsoleting PID.

d1_common.revision.revision_list_to_obsoleted_by_dict(revision_list)
Args: revision_list: list of tuple tuple: PID, SID, OBSOLETES_PID, OBSOLETED_BY_PID.

Returns: dict: Dict of obsoleting PID to obsoleted PID.

d1_common.system_metadata module

Utilities for handling the DataONE SystemMetadata type.

DataONE API methods such as MNStorage.create() require a Science Object and System Metadata pair.

Examples

Example v2 SystemMetadata XML document with all optional values included:

<v2:systemMetadata xmlns:v2="http://ns.dataone.org/service/types/v2.0">
<!--Optional:-->
<serialVersion>11</serialVersion>

<identifier>string</identifier>
<formatId>string</formatId>
<size>11</size>
<checksum algorithm="string">string</checksum>

<!--Optional:-->
<submitter>string</submitter>
<rightsHolder>string</rightsHolder>

<!--Optional:-->
<accessPolicy>
<!--1 or more repetitions:-->
<allow>

<!--1 or more repetitions:-->
<subject>string</subject>
<!--1 or more repetitions:-->
<permission>read</permission>

</allow>
</accessPolicy>

<!--Optional:-->
<replicationPolicy replicationAllowed="true" numberReplicas="3">
<!--Zero or more repetitions:-->
<preferredMemberNode>string</preferredMemberNode>

(continues on next page)

170 Chapter 4. Contents

DataONE Python Products

(continued from previous page)

<!--Zero or more repetitions:-->
<blockedMemberNode>string</blockedMemberNode>

</replicationPolicy>

<!--Optional:-->
<obsoletes>string</obsoletes>
<obsoletedBy>string</obsoletedBy>
<archived>true</archived>
<dateUploaded>2014-09-18T17:18:33</dateUploaded>
<dateSysMetadataModified>2006-08-19T11:27:14-06:00</dateSysMetadataModified>
<originMemberNode>string</originMemberNode>
<authoritativeMemberNode>string</authoritativeMemberNode>

<!--Zero or more repetitions:-->
<replica>
<replicaMemberNode>string</replicaMemberNode>
<replicationStatus>failed</replicationStatus>
<replicaVerified>2013-05-21T19:02:49-06:00</replicaVerified>

</replica>

<!--Optional:-->
<seriesId>string</seriesId>

<!--Optional:-->
<mediaType name="string">
<!--Zero or more repetitions:-->
<property name="string">string</property>

</mediaType>

<!--Optional:-->
<fileName>string</fileName>

</v2:systemMetadata>

d1_common.system_metadata.is_sysmeta_pyxb(sysmeta_pyxb)
Args: sysmeta_pyxb: Object that may or may not be a SystemMetadata PyXB object.

Returns

• True if sysmeta_pyxb is a SystemMetadata PyXB object.

• False if sysmeta_pyxb is not a PyXB object or is a PyXB object of a type other than
SystemMetadata.

Return type bool

d1_common.system_metadata.normalize_in_place(sysmeta_pyxb, reset_timestamps=False)
Normalize SystemMetadata PyXB object in-place.

Parameters

• sysmeta_pyxb – SystemMetadata PyXB object to normalize.

• reset_timestamps – bool True: Timestamps in the SystemMetadata are set to a standard
value so that objects that are compared after normalization register as equivalent if only their
timestamps differ.

4.5. DataONE Common Library for Python 171

DataONE Python Products

Notes

The SystemMetadata is normalized by removing any redundant information and ordering all sections where
there are no semantics associated with the order. The normalized SystemMetadata is intended to be semantically
equivalent to the un-normalized one.

d1_common.system_metadata.are_equivalent_pyxb(a_pyxb, b_pyxb, ig-
nore_timestamps=False)

Determine if SystemMetadata PyXB objects are semantically equivalent.

Normalize then compare SystemMetadata PyXB objects for equivalency.

Parameters

• a_pyxb, b_pyxb – SystemMetadata PyXB objects to compare

• reset_timestamps – bool True: Timestamps in the SystemMetadata are set to a standard
value so that objects that are compared after normalization register as equivalent if only their
timestamps differ.

Returns True if SystemMetadata PyXB objects are semantically equivalent.

Return type bool

Notes

The SystemMetadata is normalized by removing any redundant information and ordering all sections where
there are no semantics associated with the order. The normalized SystemMetadata is intended to be semantically
equivalent to the un-normalized one.

d1_common.system_metadata.are_equivalent_xml(a_xml, b_xml, ignore_timestamps=False)
Determine if two SystemMetadata XML docs are semantically equivalent.

Normalize then compare SystemMetadata XML docs for equivalency.

Parameters

• a_xml, b_xml – bytes UTF-8 encoded SystemMetadata XML docs to compare

• ignore_timestamps – bool True: Timestamps in the SystemMetadata are ignored so that
objects that are compared register as equivalent if only their timestamps differ.

Returns True if SystemMetadata XML docs are semantically equivalent.

Return type bool

Notes

The SystemMetadata is normalized by removing any redundant information and ordering all sections where
there are no semantics associated with the order. The normalized SystemMetadata is intended to be semantically
equivalent to the un-normalized one.

d1_common.system_metadata.clear_elements(sysmeta_pyxb, clear_replica=True,
clear_serial_version=True)

{clear_replica} causes any replica information to be removed from the object.

{clear_replica} ignores any differences in replica information, as this information is often different between MN
and CN.

172 Chapter 4. Contents

DataONE Python Products

d1_common.system_metadata.update_elements(dst_pyxb, src_pyxb, el_list)
Copy elements specified in el_list from src_pyxb to dst_pyxb

Only elements that are children of root are supported. See SYSMETA_ROOT_CHILD_LIST.

If an element in el_list does not exist in src_pyxb, it is removed from dst_pyxb.

d1_common.type_conversions module

Utilities for handling the DataONE types.

• Handle conversions between XML representations used in the D1 Python stack.

• Handle conversions between v1 and v2 DataONE XML types.

The DataONE Python stack uses the following representations for the DataONE API XML docs:

• As native Unicode str, typically “pretty printed” with indentations, when formatted for display.

• As UTF-8 encoded bytes when send sending or receiving over the network, or loading or saving as files.

• Schema validation and manipulation in Python code as PyXB binding objects.

• General processing as ElementTrees.

In order to allow conversions between all representations without having to implement separate conversions for each
combination of input and output representation, a “hub and spokes” model is used. Native Unicode str was selected as
the “hub” representation due to:

• PyXB provides translation to/from string and DOM.

• ElementTree provides translation to/from string.

d1_common.type_conversions.get_version_tag_by_pyxb_binding(pyxb_binding)
Map PyXB binding to DataONE API version.

Given a PyXB binding, return the API major version number.

Parameters pyxb_binding – PyXB binding object

Returns DataONE API major version number, currently, v1, 1, v2 or 2.

d1_common.type_conversions.get_pyxb_binding_by_api_version(api_major,
api_minor=0)

Map DataONE API version tag to PyXB binding.

Given a DataONE API major version number, return PyXB binding that can serialize and deserialize DataONE
XML docs of that version.

Parameters api_major, api_minor – str or int DataONE API major and minor version numbers.

• If api_major is an integer, it is combined with api_minor to form an exact version.

• If api_major is a string of v1 or v2, api_minor is ignored and the latest PyXB bindin-
gavailable for the api_major version is returned.

Returns E.g., d1_common.types.dataoneTypes_v1_1.

Return type PyXB binding

d1_common.type_conversions.get_version_tag(api_major)
Args:

api_major: int DataONE API major version. Valid versions are currently 1 or 2. Returns: str: DataONE API
version tag. Valid version tags are currently v1 or v2.

4.5. DataONE Common Library for Python 173

DataONE Python Products

d1_common.type_conversions.extract_version_tag_from_url(url)
Extract a DataONE API version tag from a MN or CN service endpoint URL.

Parameters url – str Service endpoint URL. E.g.: https://mn.example.org/path/v2/
object/pid.

Returns Valid version tags are currently v1 or v2.

Return type str

d1_common.type_conversions.get_pyxb_namespaces()
Returns:

list of str: XML namespaces currently known to PyXB

d1_common.type_conversions.str_to_v1_str(xml_str)
Convert a API v2 XML doc to v1 XML doc.

Removes elements that are only valid for v2 and changes namespace to v1.

If doc is already v1, it is returned unchanged.

Parameters xml_str – str API v2 XML doc. E.g.: SystemMetadata v2.

Returns API v1 XML doc. E.g.: SystemMetadata v1.

Return type str

d1_common.type_conversions.pyxb_to_v1_str(pyxb_obj)
Convert a API v2 PyXB object to v1 XML doc.

Removes elements that are only valid for v2 and changes namespace to v1.

Parameters pyxb_obj – PyXB object API v2 PyXB object. E.g.: SystemMetadata v2_0.

Returns API v1 XML doc. E.g.: SystemMetadata v1.

Return type str

d1_common.type_conversions.str_to_v1_pyxb(xml_str)
Convert a API v2 XML doc to v1 PyXB object.

Removes elements that are only valid for v2 and changes namespace to v1.

Parameters xml_str – str API v2 XML doc. E.g.: SystemMetadata v2.

Returns API v1 PyXB object. E.g.: SystemMetadata v1_2.

Return type PyXB object

d1_common.type_conversions.str_to_v2_str(xml_str)
Convert a API v1 XML doc to v2 XML doc.

All v1 elements are valid for v2, so only changes namespace.

Parameters xml_str – str API v1 XML doc. E.g.: SystemMetadata v1.

Returns API v2 XML doc. E.g.: SystemMetadata v2.

Return type str

d1_common.type_conversions.pyxb_to_v2_str(pyxb_obj)
Convert a API v1 PyXB object to v2 XML doc.

All v1 elements are valid for v2, so only changes namespace.

Parameters pyxb_obj – PyXB object API v1 PyXB object. E.g.: SystemMetadata v1_0.

Returns API v2 XML doc. E.g.: SystemMetadata v2.

174 Chapter 4. Contents

DataONE Python Products

Return type str

d1_common.type_conversions.str_to_v2_pyxb(xml_str)
Convert a API v1 XML doc to v2 PyXB object.

All v1 elements are valid for v2, so only changes namespace.

Parameters xml_str – str API v1 XML doc. E.g.: SystemMetadata v1.

Returns API v2 PyXB object. E.g.: SystemMetadata v2_0.

Return type PyXB object

d1_common.type_conversions.is_pyxb(pyxb_obj)
Returns:

bool: True if pyxb_obj is a PyXB object.

d1_common.type_conversions.is_pyxb_d1_type(pyxb_obj)
Returns:

bool: True if pyxb_obj is a PyXB object holding a DataONE API type.

d1_common.type_conversions.is_pyxb_d1_type_name(pyxb_obj, expected_pyxb_type_name)

Parameters

• pyxb_obj – object May be a PyXB object and may hold a DataONE API type.

• expected_pyxb_type_name – str Case sensitive name of a DataONE type.

E.g.: SystemMetadata, LogEntry, ObjectInfo.

Returns True if object is a PyXB object holding a value of the specified type.

Return type bool

d1_common.type_conversions.pyxb_get_type_name(obj_pyxb)
Args: obj_pyxb: PyXB object.

Returns

Name of the type the PyXB object is holding.

E.g.: SystemMetadata, LogEntry, ObjectInfo.

Return type str

d1_common.type_conversions.pyxb_get_namespace_name(obj_pyxb)
Args: obj_pyxb: PyXB object.

Returns

Namespace and Name of the type the PyXB object is holding.

E.g.: {http://ns.dataone.org/service/types/v2.0}SystemMetadata

Return type str

d1_common.type_conversions.str_is_v1(xml_str)

Parameters xml_str – str DataONE API XML doc.

Returns True if XML doc is a DataONE API v1 type.

Return type bool

d1_common.type_conversions.str_is_v2(xml_str)

Parameters xml_str – str DataONE API XML doc.

4.5. DataONE Common Library for Python 175

DataONE Python Products

Returns True if XML doc is a DataONE API v2 type.

Return type bool

d1_common.type_conversions.str_is_error(xml_str)

Parameters xml_str – str DataONE API XML doc.

Returns True if XML doc is a DataONE Exception type.

Return type bool

d1_common.type_conversions.str_is_identifier(xml_str)

Parameters xml_str – str DataONE API XML doc.

Returns True if XML doc is a DataONE Identifier type.

Return type bool

d1_common.type_conversions.str_is_objectList(xml_str)

Parameters xml_str – str DataONE API XML doc.

Returns True if XML doc is a DataONE ObjectList type.

Return type bool

d1_common.type_conversions.str_is_well_formed(xml_str)

Parameters xml_str – str DataONE API XML doc.

Returns True if XML doc is well formed.

Return type bool

d1_common.type_conversions.pyxb_is_v1(pyxb_obj)

Parameters pyxb_obj – PyXB object PyXB object holding an unknown type.

Returns True if pyxb_obj holds an API v1 type.

Return type bool

d1_common.type_conversions.pyxb_is_v2(pyxb_obj)

Parameters pyxb_obj – PyXB object PyXB object holding an unknown type.

Returns True if pyxb_obj holds an API v2 type.

Return type bool

d1_common.type_conversions.str_to_pyxb(xml_str)
Deserialize API XML doc to PyXB object.

Parameters xml_str – str DataONE API XML doc

Returns Matching the API version of the XML doc.

Return type PyXB object

d1_common.type_conversions.str_to_etree(xml_str, encoding=’utf-8’)
Deserialize API XML doc to an ElementTree.

Parameters

• xml_str – bytes DataONE API XML doc

• encoding – str Decoder to use when converting the XML doc bytes to a Unicode str.

Returns Matching the API version of the XML doc.

176 Chapter 4. Contents

DataONE Python Products

Return type ElementTree

d1_common.type_conversions.pyxb_to_str(pyxb_obj, encoding=’utf-8’)
Serialize PyXB object to XML doc.

Parameters

• pyxb_obj – PyXB object

• encoding – str Encoder to use when converting the Unicode strings in the PyXB object to
XML doc bytes.

Returns API XML doc, matching the API version of pyxb_obj.

Return type str

d1_common.type_conversions.etree_to_str(etree_obj, encoding=’utf-8’)
Serialize ElementTree to XML doc.

Parameters

• etree_obj – ElementTree

• encoding – str Encoder to use when converting the Unicode strings in the ElementTree to
XML doc bytes.

Returns API XML doc matching the API version of etree_obj.

Return type str

d1_common.type_conversions.pyxb_to_etree(pyxb_obj)
Convert PyXB object to ElementTree.

Parameters pyxb_obj – PyXB object

Returns Matching the API version of the PyXB object.

Return type ElementTree

d1_common.type_conversions.etree_to_pyxb(etree_obj)
Convert ElementTree to PyXB object.

Parameters etree_obj – ElementTree

Returns Matching the API version of the ElementTree object.

Return type PyXB object

d1_common.type_conversions.replace_namespace_with_prefix(tag_str,
ns_reverse_dict=None)

Convert XML tag names with namespace on the form {namespace}tag to form prefix:tag.

Parameters

• tag_str – str Tag name with namespace. E.g.: {http://www.openarchives.org/
ore/terms/}ResourceMap.

• ns_reverse_dict – dict A dictionary of namespace to prefix to use for the conversion. If not
supplied, a default dict with the namespaces used in DataONE XML types is used.

Returns Tag name with prefix. E.g.: ore:ResourceMap.

Return type str

d1_common.type_conversions.etree_replace_namespace(etree_obj, ns_str)
In-place change the namespace of elements in an ElementTree.

Parameters

4.5. DataONE Common Library for Python 177

DataONE Python Products

• etree_obj – ElementTree

• ns_str – str The namespace to set. E.g.: http://ns.dataone.org/service/
types/v1.

d1_common.type_conversions.strip_v2_elements(etree_obj)
In-place remove elements and attributes that are only valid in v2 types.

Args: etree_obj: ElementTree ElementTree holding one of the DataONE API types that changed between v1
and v2.

d1_common.type_conversions.strip_system_metadata(etree_obj)
In-place remove elements and attributes that are only valid in v2 types from v1 System Metadata.

Args: etree_obj: ElementTree ElementTree holding a v1 SystemMetadata.

d1_common.type_conversions.strip_log(etree_obj)
In-place remove elements and attributes that are only valid in v2 types from v1 Log.

Args: etree_obj: ElementTree ElementTree holding a v1 Log.

d1_common.type_conversions.strip_logEntry(etree_obj)
In-place remove elements and attributes that are only valid in v2 types from v1 LogEntry.

Args: etree_obj: ElementTree ElementTree holding a v1 LogEntry.

d1_common.type_conversions.strip_node(etree_obj)
In-place remove elements and attributes that are only valid in v2 types from v1 Node.

Args: etree_obj: ElementTree ElementTree holding a v1 Node.

d1_common.type_conversions.strip_node_list(etree_obj)
In-place remove elements and attributes that are only valid in v2 types from v1 NodeList.

Args: etree_obj: ElementTree ElementTree holding a v1 NodeList.

d1_common.type_conversions.v2_0_tag(element_name)
Add a v2 namespace to a tag name.

Parameters element_name – str The name of a DataONE v2 type. E.g.: NodeList.

Returns The tag name with DataONE API v2 namespace. E.g.: {http://ns.dataone.org/
service/types/v2.0}NodeList

Return type str

d1_common.url module

Utilities for handling URLs in DataONE.

d1_common.url.parseUrl(url)
Return a dict containing scheme, netloc, url, params, query, fragment keys.

query is a dict where the values are always lists. If the query key appears only once in the URL, the list will
have a single value.

d1_common.url.isHttpOrHttps(url)
URL is HTTP or HTTPS protocol.

Upper and lower case protocol names are recognized.

d1_common.url.encodePathElement(element)
Encode a URL path element according to RFC3986.

178 Chapter 4. Contents

DataONE Python Products

d1_common.url.decodePathElement(element)
Decode a URL path element according to RFC3986.

d1_common.url.encodeQueryElement(element)
Encode a URL query element according to RFC3986.

d1_common.url.decodeQueryElement(element)
Decode a URL query element according to RFC3986.

d1_common.url.stripElementSlashes(element)
Strip any slashes from the front and end of an URL element.

d1_common.url.joinPathElements(*elements)
Join two or more URL elements, inserting ‘/’ as needed.

Note: Any leading and trailing slashes are stripped from the resulting URL. An empty element (‘’) causes an
empty spot in the path (‘//’).

d1_common.url.encodeAndJoinPathElements(*elements)
Encode URL path element according to RFC3986 then join them, inserting ‘/’ as needed.

Note: Any leading and trailing slashes are stripped from the resulting URL. An empty element (‘’) causes an
empty spot in the path (‘//’).

d1_common.url.normalizeTarget(target)
If necessary, modify target so that it ends with ‘/’.

d1_common.url.urlencode(query, doseq=0)
Modified version of the standard urllib.urlencode that is conforms to RFC3986. The urllib version encodes
spaces as ‘+’ which can lead to inconsistency. This version will always encode spaces as ‘%20’.

Encode a sequence of two-element tuples or dictionary into a URL query string.

If any values in the query arg are sequences and doseq is true, each sequence element is converted to a separate
parameter.

If the query arg is a sequence of two-element tuples, the order of the parameters in the output will match the
order of parameters in the input.

d1_common.url.makeCNBaseURL(url)
Attempt to create a valid CN BaseURL when one or more sections of the URL are missing.

d1_common.url.makeMNBaseURL(url)
Attempt to create a valid MN BaseURL when one or more sections of the URL are missing.

d1_common.url.find_url_mismatches(a_url, b_url)
Given two URLs, return a list of any mismatches.

If the list is empty, the URLs are equivalent. Implemented by parsing and comparing the elements. See RFC
1738 for details.

d1_common.url.is_urls_equivalent(a_url, b_url)

d1_common.util module

General utilities often needed by DataONE clients and servers.

d1_common.util.log_setup(is_debug=False, is_multiprocess=False)
Set up a standardized log format for the DataONE Python stack. All Python components should use this func-
tion. If is_multiprocess is True, include process ID in the log so that logs can be separated for each
process.

4.5. DataONE Common Library for Python 179

DataONE Python Products

Output only to stdout and stderr.

d1_common.util.get_content_type(content_type)
Extract the MIME type value from a content type string.

Removes any subtype and parameter values that may be present in the string.

Parameters content_type – str String with content type and optional subtype and parameter fields.

Returns String with only content type

Return type str

Example:

Input: multipart/form-data; boundary=aBoundaryString
Returns: multipart/form-data

d1_common.util.nested_update(d, u)
Merge two nested dicts.

Nested dicts are sometimes used for representing various recursive structures. When updating such a structure,
it may be convenient to present the updated data as a corresponding recursive structure. This function will then
apply the update.

Parameters

• d – dict dict that will be updated in-place. May or may not contain nested dicts.

• u – dict dict with contents that will be merged into d. May or may not contain nested dicts.

class d1_common.util.EventCounter
Bases: object

Count events during a lengthy operation and write running totals and/or a summary to a logger when the opera-
tion has completed.

The summary contains the name and total count of each event that was counted.

Example

Summary written to the log:

Events:
Creating SciObj DB representations: 200
Retrieving revision chains: 200
Skipped Node registry update: 1
Updating obsoletedBy: 42
Whitelisted subject: 2

event_dict
Provide direct access to the underlying dict where events are recorded.

Returns: dict: Events and event counts.

count(event_str, inc_int=1)
Count an event.

Parameters

• event_str – The name of an event to count. Used as a key in the event dict. The same
name will also be used in the summary.

180 Chapter 4. Contents

DataONE Python Products

• inc_int – int Optional argument to increase the count for the event by more than 1.

log_and_count(event_str, msg_str=None, inc_int=None)
Count an event and write a message to a logger.

Parameters

• event_str – str The name of an event to count. Used as a key in the event dict. The same
name will be used in the summary. This also becomes a part of the message logged by this
function.

• msg_str – str Optional message with details about the events. The message is only written
to the log. While the event_str functions as a key and must remain the same for the
same type of event, log_str may change between calls.

• inc_int – int Optional argument to increase the count for the event by more than 1.

dump_to_log()
Write summary to logger with the name and number of times each event has been counted.

This function may be called at any point in the process. Counts are not zeroed.

d1_common.util.print_logging()
Context manager to temporarily suppress additional information such as timestamps when writing to loggers.

This makes logging look like print(). The main use case is in scripts that mix logging and print(), as
Python uses separate streams for those, and output can and does end up getting shuffled if print() and logging
is used interchangeably.

When entering the context, the logging levels on the current handlers are saved then modified to WARNING
levels. A new DEBUG level handler with a formatter that does not write timestamps, etc, is then created.

When leaving the context, the DEBUG handler is removed and existing loggers are restored to their previous
levels.

By modifying the log levels to WARNING instead of completely disabling the loggers, it is ensured that poten-
tially serious issues can still be logged while the context manager is in effect.

d1_common.util.save_json(py_obj, json_path)
Serialize a native object to JSON and save it normalized, pretty printed to a file.

The JSON string is normalized by sorting any dictionary keys.

Parameters

• py_obj – object Any object that can be represented in JSON. Some types, such as datetimes
are automatically converted to strings.

• json_path – str File path to which to write the JSON file. E.g.: The path must exist. The
filename will normally end with “.json”.

See also:

ToJsonCompatibleTypes()

d1_common.util.load_json(json_path)
Load JSON file and parse it to a native object.

Parameters json_path – str File path from which to load the JSON file.

Returns Typically a nested structure of list and dict objects.

Return type object

4.5. DataONE Common Library for Python 181

DataONE Python Products

d1_common.util.format_json_to_normalized_pretty_json(json_str)
Normalize and pretty print a JSON string.

The JSON string is normalized by sorting any dictionary keys.

Parameters json_str – A valid JSON string.

Returns normalized, pretty printed JSON string.

Return type str

d1_common.util.serialize_to_normalized_pretty_json(py_obj)
Serialize a native object to normalized, pretty printed JSON.

The JSON string is normalized by sorting any dictionary keys.

Parameters py_obj – object Any object that can be represented in JSON. Some types, such as
datetimes are automatically converted to strings.

Returns normalized, pretty printed JSON string.

Return type str

d1_common.util.serialize_to_normalized_compact_json(py_obj)
Serialize a native object to normalized, compact JSON.

The JSON string is normalized by sorting any dictionary keys. It will be on a single line without whitespace
between elements.

Parameters py_obj – object Any object that can be represented in JSON. Some types, such as
datetimes are automatically converted to strings.

Returns normalized, compact JSON string.

Return type str

class d1_common.util.ToJsonCompatibleTypes(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separa-
tors=None, default=None)

Bases: json.encoder.JSONEncoder

Some native objects such as datetime.datetime are not automatically converted to strings for use as values
in JSON.

This helper adds such conversions for types that the DataONE Python stack encounters frequently in objects
that are to be JSON encoded.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

182 Chapter 4. Contents

DataONE Python Products

d1_common.util.format_sec_to_dhm(sec)
Format seconds to days, hours, minutes.

Parameters sec – float or int Number of seconds in a period of time

Returns 00h:00m‘‘.

Return type Period of time represented as a string on the form ‘‘0d

d1_common.xml module

Utilities for handling XML docs.

d1_common.xml.deserialize(doc_xml, pyxb_binding=None)
Deserialize DataONE XML types to PyXB.

Parameters

• doc_xml – UTF-8 encoded bytes

• pyxb_binding – PyXB binding object. If not specified, the correct one should be

• selected automatically.

Returns PyXB object

See also:

deserialize_d1_exception() for deserializing DataONE Exception types.

d1_common.xml.deserialize_d1_exception(doc_xml)
Args: doc_xml: UTF-8 encoded bytes An XML doc that conforms to the dataoneErrors XML Schema.

Returns: DataONEException object

d1_common.xml.serialize_gen(obj_pyxb, encoding=’utf-8’, pretty=False, strip_prolog=False,
xslt_url=None)

Serialize PyXB object to XML.

Parameters

• obj_pyxb – PyXB object PyXB object to serialize.

• encoding – str Encoding to use for XML doc bytes

• pretty – bool True: Use pretty print formatting for human readability.

• strip_prolog – True: remove any XML prolog (e.g., <?xml version="1.0"
encoding="utf-8"?>), from the resulting XML doc.

• xslt_url – str If specified, add a processing instruction to the XML doc that specifies the
download location for an XSLT stylesheet.

Returns XML document

d1_common.xml.serialize_for_transport(obj_pyxb, pretty=False, strip_prolog=False,
xslt_url=None)

Serialize PyXB object to XML bytes with UTF-8 encoding for transport over the network, filesystem storage
and other machine usage.

Parameters

• obj_pyxb – PyXB object PyXB object to serialize.

• pretty – bool True: Use pretty print formatting for human readability.

4.5. DataONE Common Library for Python 183

DataONE Python Products

• strip_prolog – True: remove any XML prolog (e.g., <?xml version="1.0"
encoding="utf-8"?>), from the resulting XML doc.

• xslt_url – str If specified, add a processing instruction to the XML doc that specifies the
download location for an XSLT stylesheet.

Returns UTF-8 encoded XML document

Return type bytes

See also:

serialize_for_display()

d1_common.xml.serialize_to_xml_str(obj_pyxb, pretty=True, strip_prolog=False,
xslt_url=None)

Serialize PyXB object to pretty printed XML str for display.

Parameters

• obj_pyxb – PyXB object PyXB object to serialize.

• pretty – bool False: Disable pretty print formatting. XML will not have line breaks.

• strip_prolog – True: remove any XML prolog (e.g., <?xml version="1.0"
encoding="utf-8"?>), from the resulting XML doc.

• xslt_url – str If specified, add a processing instruction to the XML doc that specifies the
download location for an XSLT stylesheet.

Returns Pretty printed XML document

Return type str

d1_common.xml.reformat_to_pretty_xml(doc_xml)
Pretty print XML doc.

Parameters doc_xml – str Well formed XML doc

Returns Pretty printed XML doc

Return type str

d1_common.xml.are_equivalent_pyxb(a_pyxb, b_pyxb)
Return True if two PyXB objects are semantically equivalent, else False.

d1_common.xml.are_equivalent(a_xml, b_xml, encoding=None)
Return True if two XML docs are semantically equivalent, else False.

• TODO: Include test for tails. Skipped for now because tails are not used in any D1 types.

d1_common.xml.are_equal_or_superset(superset_tree, base_tree)
Return True if superset_tree is equal to or a superset of base_tree

• Checks that all elements and attributes in superset_tree are present and contain the same values as
in base_tree. For elements, also checks that the order is the same.

• Can be used for checking if one XML document is based on another, as long as all the information in
base_tree is also present and unmodified in superset_tree.

d1_common.xml.are_equal_xml(a_xml, b_xml)
Normalize and compare XML documents for equality. The document may or may not be a DataONE type.

Parameters

• a_xml – str

• b_xml – str XML documents to compare for equality.

184 Chapter 4. Contents

DataONE Python Products

Returns True if the XML documents are semantically equivalent.

Return type bool

d1_common.xml.are_equal_pyxb(a_pyxb, b_pyxb)
Normalize and compare PyXB objects for equality.

Parameters

• a_pyxb – PyXB object

• b_pyxb – PyXB object PyXB objects to compare for equality.

Returns True if the PyXB objects are semantically equivalent.

Return type bool

d1_common.xml.are_equal_elements(a_el, b_el)
Normalize and compare ElementTrees for equality.

Parameters

• a_el – ElementTree

• b_el – ElementTree ElementTrees to compare for equality.

Returns True if the ElementTrees are semantically equivalent.

Return type bool

d1_common.xml.sort_value_list_pyxb(obj_pyxb)
In-place sort complex value siblings in a PyXB object.

Args: obj_pyxb: PyXB object

d1_common.xml.sort_elements_by_child_values(obj_pyxb, child_name_list)
In-place sort simple or complex elements in a PyXB object by values they contain in child elements.

Parameters

• obj_pyxb – PyXB object

• child_name_list – list of str List of element names that are direct children of the PyXB
object.

d1_common.xml.format_diff_pyxb(a_pyxb, b_pyxb)
Create a diff between two PyXB objects.

Parameters

• a_pyxb – PyXB object

• b_pyxb – PyXB object

Returns Differ-style delta

Return type str

d1_common.xml.format_diff_xml(a_xml, b_xml)
Create a diff between two XML documents.

Parameters

• a_xml – str

• b_xml – str

Returns Differ-style delta

4.5. DataONE Common Library for Python 185

DataONE Python Products

Return type str

d1_common.xml.is_valid_utf8(o)
Determine if object is valid UTF-8 encoded bytes.

Parameters o – str

Returns True if object is bytes containing valid UTF-8.

Return type bool

Notes

• An empty bytes object is valid UTF-8.

• Any type of object can be checked, not only bytes.

d1_common.xml.get_auto(obj_pyxb)
Return value from simple or complex PyXB element.

PyXB complex elements have a .value() member which must be called in order to retrieve the value of the
element, while simple elements represent their values directly. This function allows retrieving element values
without knowing the type of element.

Parameters obj_pyxb – PyXB object

Returns Value of the PyXB object.

Return type str

d1_common.xml.get_opt_attr(obj_pyxb, attr_str, default_val=None)
Get an optional attribute value from a PyXB element.

The attributes for elements that are optional according to the schema and not set in the PyXB object are present
and set to None.

PyXB validation will fail if required elements are missing.

Parameters

• obj_pyxb – PyXB object

• attr_str – str Name of an attribute that the PyXB object may contain.

• default_val – any object Value to return if the attribute is not present.

Returns Value of the attribute if present, else default_val.

Return type str

d1_common.xml.get_opt_val(obj_pyxb, attr_str, default_val=None)
Get an optional Simple Content value from a PyXB element.

The attributes for elements that are optional according to the schema and not set in the PyXB object are present
and set to None.

PyXB validation will fail if required elements are missing.

Parameters

• obj_pyxb – PyXB object

• attr_str – str Name of an attribute that the PyXB object may contain.

• default_val – any object Value to return if the attribute is not present.

186 Chapter 4. Contents

DataONE Python Products

Returns Value of the attribute if present, else default_val.

Return type str

d1_common.xml.get_req_val(obj_pyxb)
Get a required Simple Content value from a PyXB element.

The attributes for elements that are required according to the schema are always present, and provide a value()
method.

PyXB validation will fail if required elements are missing.

Getting a Simple Content value from PyXB with .value() returns a PyXB object that lazily evaluates to a native
Unicode string. This confused parts of the Django ORM that check types before passing values to the database.
This function forces immediate conversion to Unicode.

Parameters obj_pyxb – PyXB object

Returns Value of the element.

Return type str

exception d1_common.xml.CompareError
Bases: Exception

Raised when objects are compared and found not to be semantically equivalent.

4.6 Indices and tables

• genindex

• modindex

• search

4.7 DataONE Client Library for Python

See DataONE Python Products for an overview of the DataONE libraries and other products implemented in Python.

The DataONE Client Library for Python works together with the DataONE Common Library for Python to provide
functionality commonly needed by client software that connects to DataONE nodes.

The main functionality provided by this library is a complete set of wrappers for all DataONE API methods. There
are many details related to interacting with the DataONE API, such as creating MIME multipart messages, encoding
parameters into URLs and handling Unicode. The wrappers hide these details, allowing the developer to communicate
with nodes by calling native Python methods which take and return native Python objects.

The wrappers also convert any errors received from the nodes into native exceptions, enabling clients to use Python’s
concise exception handling system to handle errors.

Contents:

4.7.1 Installing DataONE Client Library for Python

DataONE Common Library for Python is distributed via PyPI, the Python Package Index.

Set up server packages:

• The build environment for DataONE Python extensions and lxml

4.6. Indices and tables 187

DataONE Python Products

• Commands used in the install

$ sudo apt install --yes build-essential python-dev libssl-dev \
libxml2-dev libxslt-dev openssl

Install pip (Python package installer):

$ sudo apt install --yes python-pip; sudo pip install pip --upgrade;

Install the DataONE Client Library for Python and all its dependencies. This will also automatically build several
Python C extensions:

$ pip install dataone.libclient

4.7.2 Unit Tests

This library is shipped with unit tests that verify correct operation. It is recommended that these are executed after
installation.

4.7.3 Updating the library

To update your copy of the library to the latest version available on PyPI, run pip install with the --upgrade
option:

$ pip install --upgrade dataone.libclient

4.7.4 API

d1_client package

DataONE Client Library.

The DataONE Client Library for Python works together with the DataONE Common Library for Python to provide
functionality commonly needed by client software that connects to DataONE nodes.

The main functionality provided by this library is a complete set of wrappers for all DataONE API methods. There
are many details related to interacting with the DataONE API, such as creating MIME multipart messages, encoding
parameters into URLs and handling Unicode. The wrappers hide these details, allowing the developer to communicate
with nodes by calling native Python methods which take and return native objects.

The wrappers also convert any errors received from the nodes into native exceptions, enabling clients to use Python’s
concise exception handling system to handle errors.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Subpackages

d1_client.iter package

This package contains iterators that provide a convenient way to retrieve and iterate over Node contents.

188 Chapter 4. Contents

DataONE Python Products

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Submodules

d1_client.iter.logrecord module

Log Record Iterator.

Iterator that provides a convenient way to retrieve log records from a DataONE node and iterate over the results.

Log records are automatically retrieved from the node in batches as required.

The LogRecordIterator takes a CoordinatingNodeClient or MemberNodeClient together with filters to select a set of
log records. It returns an iterator object which enables using a Python for loop for iterating over the matching log
records.

Log records are retrieved from the Node only when required. This avoids storing a large list of records in memory.

The LogRecordIterator repeatedly calls the Node’s getLogRecords() API method. The CN implementation of
this method yields log records for objects for which the caller has access. Log records are not provided for public
objects. This is also how getLogRecords() is implemented in the Metacat Member Node. In GMN, the require-
ments for authentication for this method are configurable. Other MNs are free to chose how or if to implement access
control for this method.

To authenticate to the target Node, provide a valid CILogon signed certificate when creating the CoordinatingNode-
Client or MemberNodeClient.

See the CNCore.getLogRecords() and MNCore.getLogRecords() specifications in the DataONE Architecture Docu-
mentation for more information.

Example

#!/usr/bin/env python

import d1_client.client
import sys

logging.basicConfig(level=logging.INFO)
target = "https://mn-unm-1.dataone.org/mn"
client = d1_client.client.MemberNodeClient(target=target)
log_record_iterator = LogRecordIterator(client)
for event in log_record_iterator:
print "Event = %s" % event.event
print "Timestamp = %s" % event.dateLogged.isoformat()
print "IP Addres = %s" % event.ipAddress
print "Identifier = %s" % event.identifier
print "User agent = %s" % event.userAgent
print "Subject = %s" % event.subject
print '-' * 79

class d1_client.iter.logrecord.LogRecordIterator(client,
get_log_records_arg_dict=None,
start=0, count=100)

Bases: object

Log Record Iterator.

4.7. DataONE Client Library for Python 189

https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.getLogRecords
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNCore.getLogRecords
https://releases.dataone.org/online/api-documentation-v2.0.1/index.html
https://releases.dataone.org/online/api-documentation-v2.0.1/index.html

DataONE Python Products

__init__(client, get_log_records_arg_dict=None, start=0, count=100)
Log Record Iterator.

Parameters

• client – d1_client.cnclient.CoordinatingNodeClient or

• d1_client.mnclient.MemberNodeClient – A client that has been initialized with the
base_url and, optionally, other connection parameters for the DataONE node from
which log records are to be retrieved.

Log records for an object are typically available only to subjects that have elevated per-
missions on the object, so an unauthenticated (public) connection may not receive any log
records. See the CoordinatingNodeClient and MemberNodeClient classes for details on
how to authenticate.

• get_log_records_arg_dict – dict

If this argument is set, it is passed as keyword arguments to getLogRecords().

The iterator calls the getLogRecords() API method as necessary to retrieve the log records.
The method supports a limited set of filtering capabilities, Currently, fromDate, toDate,
event, pidFilter and idFilter.

To access these filters, use this argument to pass a dict which matching keys and the ex-
pected values. E.g.:

{ 'fromDate': datetime.datetime(2009, 1, 1) }

• start – int

If a section of the log records have been retrieved earlier, they can be skipped by setting a
start value.

• count – int

The number of log records to retrieve in each getLogRecords() call.

Depending on network conditions and Node implementation, changing this value from its
default may affect performance and resource usage.

d1_client.iter.logrecord_multi module

Multiprocessed LogRecord Iterator.

Fast retrieval of event log records from a DataONE Node.

See additional notes in SysMeta iter docstring.

class d1_client.iter.logrecord_multi.LogRecordIteratorMulti(base_url,
page_size=1000,
max_workers=16,
max_result_queue_size=100,
max_task_queue_size=16,
api_major=2,
client_arg_dict=None,
get_log_records_arg_dict=None)

Bases: d1_client.iter.base_multi.MultiprocessedIteratorBase

190 Chapter 4. Contents

DataONE Python Products

d1_client.iter.node module

Iterate over the nodes that are registered in a DataONE environment.

For each Node in the environment, returns a PyXB representation of a DataONE Node document.

https://releases.dataone.org/online/api-documentation-v2.0/ apis/Types.html#Types.Node

class d1_client.iter.node.NodeListIterator(base_url, api_major=2,
client_arg_dict=None, listNodes_dict=None)

Bases: object

d1_client.iter.objectlist module

Implements an iterator that iterates over the entire ObjectList for a DataONE node. Data is retrieved from the target
only when required.

The ObjectListIterator takes a CoordinatingNodeClient or MemberNodeClient together with filters to select a set of
objects. It returns an iterator object which enables using a Python for loop for iterating over the matching objects.
Using the ObjectListIterator is appropriate in circumstances where a large percentage of the total number of objecs is
expected to be returned or when one of the limited number of filters can be used for selecting the desired set of objects.

If more fine grained filtering is required, DataONE’s Solr index should be used. It can be accessed using the Solr
Client.

Object information is retrieved from the Node only when required. This avoids storing a large object list in memory.

The ObjectListIterator repeatedly calls the Node’s listObjects() API method. The CN implementation of this
method yields only public objects and objects for which the caller has access. This is also how listObjects() is
implemented in the Metacat and GMN Member Nodes. However, other MNs are free to chose how or if to implement
access control for this method.

To authenticate to the target Node, provide a valid CILogon signed certificate when creating the CoordinatingNode-
Client or MemberNodeClient.

Example:

#!/usr/bin/env python
from d1_client import d1baseclient
from d1_client.objectlistiterator import ObjectListIterator

The Base URL for a DataONE Coordinating Node or Member Node.
base_url = 'https://cn.dataone.org/cn'
Start retrieving objects from this position.
start = 0
Maximum number of entries to retrieve.
max = 500
Maximum number of entries to retrieve per call.
pagesize = 100

client = d1baseclient.DataONEBaseClient(base_url)
ol = ObjectListIterator(client, start=start, pagesize=pagesize, max=max)
counter = start
print "---"
print "total: %d" % len(ol)
print "---"
for o in ol:
print "-"

(continues on next page)

4.7. DataONE Client Library for Python 191

https://releases.dataone.org/online/api-documentation-v2.0/

DataONE Python Products

(continued from previous page)

print " item : %d" % counter
print " pid : %s" % o.identifier.value()
print " modified : %s" % o.dateSysMetadataModified
print " format : %s" % o.formatId
print " size : %s" % o.size
print " checksum : %s" % o.checksum.value()
print " algorithm: %s" % o.checksum.algorithm
counter += 1

Output:

total: 5

-

item : 1
pid : knb-lter-lno.9.1
modified : 2011-01-13 18:42:32.469000
format : eml://ecoinformatics.org/eml-2.0.1
size : 6751
checksum : 9039F0388DC76B1A13B0F139520A8D90
algorithm: MD5

-
item : 2
pid : LB30XX_030MTV2021R00_20080516.50.1
modified : 2011-01-12 22:51:00.774000
format : eml://ecoinformatics.org/eml-2.0.1
size : 14435
checksum : B2200FB7FAE18A3517AA9E2EA680EE09
algorithm: MD5

-
...

class d1_client.iter.objectlist.ObjectListIterator(client, start=0, fromDate=None,
pagesize=500, max=-1,
nodeId=None)

Bases: object

Implements an iterator that iterates over the entire ObjectList for a DataONE node.

Data is retrieved from the target only when required.

__init__(client, start=0, fromDate=None, pagesize=500, max=-1, nodeId=None)
Initializes the iterator.

TODO: Extend this with date range and other restrictions

Parameters

• client (DataONEBaseClient or derivative) – The client instance for re-
trieving stuff.

• start (integer) – The zero based starting index value (0)

• fromDate (DateTime) –

• pagesize (integer) – Number of items to retrieve in a single request (page, 500)

• max (integer) – Maximum number of items to retrieve (all)

192 Chapter 4. Contents

DataONE Python Products

d1_client.iter.objectlist_multi module

Multiprocessed ObjectList Iterator.

Fast retrieval of ObjectList from a DataONE Node.

See additional notes in SysMeta iter docstring.

class d1_client.iter.objectlist_multi.ObjectListIteratorMulti(base_url,
page_size=1000,
max_workers=16,
max_result_queue_size=100,
max_task_queue_size=16,
api_major=2,
client_arg_dict=None,
list_objects_arg_dict=None)

Bases: d1_client.iter.base_multi.MultiprocessedIteratorBase

d1_client.iter.sysmeta_multi module

Multiprocessed System Metadata iterator.

Parallel download of a set of SystemMetadata documents from a CN or MN. The SystemMetadata to download can
be selected by the filters that are available in the MNRead.listObjects() and CNRead.listObjects() API calls. For MNs,
these include: fromDate, toDate, formatId and identifier. For CNs, these include the ones supported by MNs plus
nodeId.

Note: Unhandled exceptions raised in client code while iterating over results from this iterator, or in the iterator itself,
will not be shown and may cause the client code to hang. This is a limitation of the multiprocessing module.

If there is an error when retrieving a System Metadata, such as NotAuthorized, an object that is derived from
d1_common.types.exceptions.DataONEException is returned instead.

Will create the same number of DataONE clients and HTTP or HTTPS connections as the number of workers. A
single connection is reused, first for retrieving a page of results, then all System Metadata objects in the result.

There is a bottleneck somewhere in this iterator, but it’s not pickle/unpickle of sysmeta_pyxb.

Notes on MAX_QUEUE_SIZE:

Queues that become too large can cause deadlocks: https://stackoverflow.com/questions/21641887/
python-multiprocessing-process-hangs-on-join-for-large-queue Each item in the queue is a potentially large
SysMeta PyXB object, so we set a low max queue size.

class d1_client.iter.sysmeta_multi.SystemMetadataIteratorMulti(base_url,
page_size=1000,
max_workers=16,
max_result_queue_size=100,
max_task_queue_size=16,
api_major=2,
client_arg_dict=None,
list_objects_arg_dict=None,
get_system_metadata_arg_dict=None)

Bases: d1_client.iter.base_multi.MultiprocessedIteratorBase

Submodules

4.7. DataONE Client Library for Python 193

https://stackoverflow.com/questions/21641887/python-multiprocessing-process-hangs-on-join-for-large-queue
https://stackoverflow.com/questions/21641887/python-multiprocessing-process-hangs-on-join-for-large-queue

DataONE Python Products

d1_client.baseclient module

class d1_client.baseclient.DataONEBaseClient(base_url, *args, **kwargs)
Bases: d1_client.session.Session

Extend Session by adding REST API wrappers for APIs that are available on both Coordinating Nodes and
Member Nodes, and that have the same signature on both:

CNCore/MNCore.getLogRecords() CNRead/MNRead.get() CNRead/MNRead.getSystemMetadata() CN-
Read/MNRead.describe() CNRead/MNRead.listObjects() CNAuthorization/MNAuthorization.isAuthorized()
CNCore/MNCore.ping()

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html https://releases.dataone.org/
online/api-documentation-v2.0/apis/CN_APIs.html

On error response, raises a DataONEException.

Methods with names that end in “Response” return the HTTPResponse object directly for manual processing by
the client. The *Response methods are only needed in rare cases where the default handling is inadequate, e.g.,
for dealing with nodes that don’t fully comply with the spec.

The client classes wrap all the DataONE API methods, hiding the many details related to interacting with
the DataONE API, such as creating MIME multipart messages, encoding parameters into URLs and handling
Unicode.

The clients allow the developer to communicate with nodes by calling native Python methods which take and
return native objects.

The clients also convert any errors received from the nodes into native exceptions, enabling clients to use
Python’s concise exception handling system to handle errors.

The clients are arranged into the following class hierarchy:

194 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

DataONE Python Products

Session

DataONEBaseClient

DataONEBaseClient_1_1

MemberNodeClient CoordinatingNodeClient

MemberNodeClient_1_1 CoordinatingNodeClient_1_1

DataONEBaseClient_2_0

MemberNodeClient_2_0 CoordinatingNodeClient_2_0

DataONEClient

The classes without version designators implement functionality defined in v1.0 of the DataONE service spec-
ifications. The classes with version designators implement support for the corresponding DataONE service
specifications.

DataONEBaseClient

The DataONEBaseClient classes contain methods that allow access to APIs that are common to
Coordinating Nodes and Member Nodes.

• d1_client.d1baseclient

• d1_client.d1baseclient_1_1

• d1_client.d1baseclient_2_0

MemberNodeClient

4.7. DataONE Client Library for Python 195

DataONE Python Products

The MemberNodeClient classes contain methods that allow access to APIs that are specific to Mem-
ber Nodes.

• d1_client.mnclient

• d1_client.mnclient_1_1

• d1_client.mnclient_2_0

CoordinatingNodeClient

The CoordinatingNodeClient classes contain methods that allow access to APIs that are specific to
Coordinating Nodes.

• d1_client.cnclient

• d1_client.cnclient_1_1

• d1_client.cnclient_2_0

DataONEClient

The DataONEClient uses CN- and MN clients to perform high level operations against the DataONE
infrastructure.

• d1_client.d1client

DataONEObject

Wraps a single DataONE Science Object and adds functionality such as resolve and get.

• d1_client.d1client

SolrConnection

Provides functionality for working with DataONE’s Solr index, which powers the ONEMercury sci-
ence data search engine.

• d1_client.solr_client

__init__(base_url, *args, **kwargs)
Create a DataONEBaseClient. See Session for parameters.

Parameters

• api_major (integer) – Major version of the DataONE API

• api_minor (integer) – Minor version of the DataONE API

Returns None

api_version_tup

pyxb_binding

getLogRecordsResponse(fromDate=None, toDate=None, event=None, pidFilter=None, idFil-
ter=None, start=0, count=100, vendorSpecific=None)

getLogRecords(fromDate=None, toDate=None, event=None, pidFilter=None, idFilter=None,
start=0, count=100, vendorSpecific=None)

pingResponse(vendorSpecific=None)

ping(vendorSpecific=None)

getResponse(pid, stream=False, vendorSpecific=None)

196 Chapter 4. Contents

DataONE Python Products

get(pid, stream=False, vendorSpecific=None)
Initiate a MNRead.get(). Return a Requests Response object from which the object bytes can be retrieved.

When stream is False, Requests buffers the entire object in memory before returning the Response. This
can exhaust available memory on the local machine when retrieving large science objects. The solution is
to set stream to True, which causes the returned Response object to contain a a stream. However, see
note below.

When stream = True, the Response object will contain a stream which can be processed without buffer-
ing the entire science object in memory. However, failure to read all data from the stream can cause
connections to be blocked. Due to this, the stream parameter is False by default.

Also see:

• http://docs.python-requests.org/en/master/user/advanced/body-content-workflow

• get_and_save() in this module.

get_and_save(pid, sciobj_path, create_missing_dirs=False, vendorSpecific=None)
Like MNRead.get(), but also retrieve the object bytes and store them in a local file at sciobj_path. This
method does not have the potential issue with excessive memory usage that get() with ‘‘stream‘‘=False has.

Also see MNRead.get().

getSystemMetadataResponse(pid, vendorSpecific=None)

getSystemMetadata(pid, vendorSpecific=None)

describeResponse(pid, vendorSpecific=None)

describe(pid, vendorSpecific=None)
Note: If the server returns a status code other than 200 OK, a ServiceFailure will be raised, as this method
is based on a HEAD request, which cannot carry exception information.

listObjectsResponse(fromDate=None, toDate=None, formatId=None, identifier=None, replicaS-
tatus=None, nodeId=None, start=0, count=100, vendorSpecific=None)

listObjects(fromDate=None, toDate=None, formatId=None, identifier=None, replicaStatus=None,
nodeId=None, start=0, count=100, vendorSpecific=None)

generateIdentifierResponse(scheme, fragment=None, vendorSpecific=None)

generateIdentifier(scheme, fragment=None, vendorSpecific=None)

archiveResponse(pid, vendorSpecific=None)

archive(pid, vendorSpecific=None)

isAuthorizedResponse(pid, action, vendorSpecific=None)

isAuthorized(pid, action, vendorSpecific=None)
Return True if user is allowed to perform action on pid, else False.

d1_client.baseclient_1_1 module

class d1_client.baseclient_1_1.DataONEBaseClient_1_1(*args, **kwargs)
Bases: d1_client.baseclient.DataONEBaseClient

Extend DataONEBaseClient with functionality common between Member and Coordinating nodes that was
added in v1.1 of the DataONE infrastructure.

For details on how to use these methods, see:

4.7. DataONE Client Library for Python 197

http://docs.python-requests.org/en/master/user/advanced/body-content-workflow

DataONE Python Products

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html https://releases.dataone.org/
online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See d1_client.baseclient.DataONEBaseClient for args.

queryResponse(queryEngine, query_str, vendorSpecific=None, do_post=False, **kwargs)
CNRead.query(session, queryEngine, query) → OctetStream https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNRead.query MNQuery.query(session, queryEngine, query)
→ OctetStream http://jenkins.

-1.dataone.org/jenkins/job/API%20Documentation%20-%20trunk/ws/api- documenta-
tion/build/html/apis/MN_APIs.html#MNQuery.query.

Parameters

• queryEngine

• query_str

• vendorSpecific

• do_post

• **kwargs

Returns:

query(queryEngine, query_str, vendorSpecific=None, do_post=False, **kwargs)
See Also: queryResponse()

Parameters

• queryEngine

• query_str

• vendorSpecific

• do_post

• **kwargs

Returns:

getQueryEngineDescriptionResponse(queryEngine, **kwargs)
CNRead.getQueryEngineDescription(session, queryEngine) → QueryEngineDescription https://releases.
dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNRead.getQueryEngineDescription
MNQuery.getQueryEngineDescription(session, queryEngine) → QueryEngineDescription http:
//jenkins-1.dataone.org/jenkins/job/API%20D ocumentation%20-%20trunk/ws.

/api-documentation/build/html/apis/MN_APIs.h tml#MNQuery.getQueryEngineDescription.

Parameters

• queryEngine

• **kwargs

Returns:

getQueryEngineDescription(queryEngine, **kwargs)
See Also: getQueryEngineDescriptionResponse()

Parameters

• queryEngine

198 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api
http://jenkins
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
http://jenkins-1.dataone.org/jenkins/job/API%20D
http://jenkins-1.dataone.org/jenkins/job/API%20D

DataONE Python Products

• **kwargs

Returns:

d1_client.baseclient_1_2 module

class d1_client.baseclient_1_2.DataONEBaseClient_1_2(*args, **kwargs)
Bases: d1_client.baseclient_1_1.DataONEBaseClient_1_1

Extend DataONEBaseClient with functionality common between Member and Coordinating nodes that was
added in v1.1 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html https://releases.dataone.org/
online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See d1_client.baseclient.DataONEBaseClient for args.

d1_client.baseclient_2_0 module

class d1_client.baseclient_2_0.DataONEBaseClient_2_0(*args, **kwargs)
Bases: d1_client.baseclient_1_2.DataONEBaseClient_1_2

Extend DataONEBaseClient_1_2 with functionality common between Member and Coordinating nodes that
was added in v2.0 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html https://releases.dataone.org/
online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

updateSystemMetadataResponse(pid, sysmeta_pyxb, vendorSpecific=None)
MNStorage.updateSystemMetadata(session, pid, sysmeta) → boolean http:
//jenkins-1.dataone.org/documentation/unstable/API-Documentation- develop-
ment/apis/MN_APIs.html#MNStorage.updateSystemMetadata.

Parameters

• pid

• sysmeta_pyxb

• vendorSpecific

Returns:

updateSystemMetadata(pid, sysmeta_pyxb, vendorSpecific=None)

d1_client.cnclient module

class d1_client.cnclient.CoordinatingNodeClient(*args, **kwargs)
Bases: d1_client.baseclient.DataONEBaseClient

Extend DataONEBaseClient by adding REST API wrappers for APIs that are available on Coordinating Nodes.

4.7. DataONE Client Library for Python 199

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
http://jenkins-1.dataone.org/documentation/unstable/API-Documentation
http://jenkins-1.dataone.org/documentation/unstable/API-Documentation

DataONE Python Products

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See d1_client.baseclient.DataONEBaseClient for args.

listFormatsResponse(vendorSpecific=None)
CNCore.ping() → null https://releases.dataone.org/online/api- documentation-
v2.0.1/apis/CN_APIs.html#CNCore.ping Implemented in d1_client.baseclient.py.

CNCore.create(session, pid, object, sysmeta) → Identifier https://releases.dataone.org/online/
api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.create CN INTERNAL

CNCore.listFormats() → ObjectFormatList https://releases.dataone.org/online/api-documentation-v2.0.1/
apis/CN_APIs.html#CNCore.listFormats

Parameters vendorSpecific

Returns:

listFormats(vendorSpecific=None)
See Also: listFormatsResponse()

Parameters vendorSpecific

Returns:

getFormatResponse(formatId, vendorSpecific=None)
CNCore.getFormat(formatId) → ObjectFormat https://releases.dataone.org/online/api- documentation-
v2.0.1/apis/CN_APIs.html#CNCore.getFormat.

Parameters

• formatId

• vendorSpecific

Returns:

getFormat(formatId, vendorSpecific=None)
See Also: getFormatResponse()

Parameters

• formatId

• vendorSpecific

Returns:

reserveIdentifierResponse(pid, vendorSpecific=None)
CNCore.getLogRecords(session[, fromDate][, toDate][, event][, start][, count]) → Log https://releases.
dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNCore.getLogRecords Implemented
in d1_client.baseclient.py.

CNCore.reserveIdentifier(session, pid) → Identifier https://releases.dataone.org/online/
api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.reserveIdentifier

Parameters

• pid

• vendorSpecific

Returns:

200 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.create
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.create
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.listFormats
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.listFormats
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.reserveIdentifier
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.reserveIdentifier

DataONE Python Products

reserveIdentifier(pid, vendorSpecific=None)
See Also: reserveIdentifierResponse()

Parameters

• pid

• vendorSpecific

Returns:

listChecksumAlgorithmsResponse(vendorSpecific=None)
CNCore.listChecksumAlgorithms() → ChecksumAlgorithmList https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNCore.listChecksumAlgorithms.

Parameters vendorSpecific

Returns:

listChecksumAlgorithms(vendorSpecific=None)
See Also: listChecksumAlgorithmsResponse()

Parameters vendorSpecific

Returns:

setObsoletedByResponse(pid, obsoletedByPid, serialVersion, vendorSpecific=None)
CNCore.setObsoletedBy(session, pid, obsoletedByPid, serialVersion) → boolean https://releases.dataone.
org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNCore.setObsoletedBy.

Parameters

• pid

• obsoletedByPid

• serialVersion

• vendorSpecific

Returns:

setObsoletedBy(pid, obsoletedByPid, serialVersion, vendorSpecific=None)
See Also: setObsoletedByResponse()

Parameters

• pid

• obsoletedByPid

• serialVersion

• vendorSpecific

Returns:

listNodesResponse(vendorSpecific=None)
CNCore.listNodes() → NodeList https://releases.dataone.org/online/api- documentation-
v2.0.1/apis/CN_APIs.html#CNCore.listNodes.

Parameters vendorSpecific

Returns:

listNodes(vendorSpecific=None)
See Also: listNodesResponse()

4.7. DataONE Client Library for Python 201

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

Parameters vendorSpecific

Returns:

hasReservationResponse(pid, subject, vendorSpecific=None)
CNCore.registerSystemMetadata(session, pid, sysmeta) → Identifier CN INTERNAL.

CNCore.hasReservation(session, pid) → boolean https://releases.dataone.org/online/
api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.hasReservation

Parameters

• pid

• subject

• vendorSpecific

Returns:

hasReservation(pid, subject, vendorSpecific=None)
See Also: hasReservationResponse()

Parameters

• pid

• subject

• vendorSpecific

Returns:

resolveResponse(pid, vendorSpecific=None)
CNRead.get(session, pid) → OctetStream Implemented in d1_client.baseclient.py.

CNRead.getSystemMetadata(session, pid) → SystemMetadata Implemented in d1_client.baseclient.py

CNRead.resolve(session, pid) → ObjectLocationList https://releases.dataone.org/online/
api-documentation-v2.0.1/apis/CN_APIs.html#CNRead.resolve

Parameters

• pid

• vendorSpecific

Returns:

resolve(pid, vendorSpecific=None)
See Also: resolveResponse()

Parameters

• pid

• vendorSpecific

Returns:

getChecksumResponse(pid, vendorSpecific=None)
CNRead.getChecksum(session, pid) → Checksum https://releases.dataone.org/online/api- documentation-
v2.0.1/apis/CN_APIs.html#CNRead.getChecksum.

Parameters

• pid

• vendorSpecific

202 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.hasReservation
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.hasReservation
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNRead.resolve
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNRead.resolve
https://releases.dataone.org/online/api

DataONE Python Products

Returns:

getChecksum(pid, vendorSpecific=None)
See Also: getChecksumResponse()

Parameters

• pid

• vendorSpecific

Returns:

searchResponse(queryType, query, vendorSpecific=None, **kwargs)
CNRead.search(session, queryType, query) → ObjectList https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNRead.search.

Parameters

• queryType

• query

• vendorSpecific

• **kwargs

Returns:

search(queryType, query=None, vendorSpecific=None, **kwargs)
See Also: searchResponse()

Parameters

• queryType

• query

• vendorSpecific

• **kwargs

Returns:

queryResponse(queryEngine, query=None, vendorSpecific=None, **kwargs)
CNRead.query(session, queryEngine, query) → OctetStream https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNRead.query.

Parameters

• queryEngine

• query

• vendorSpecific

• **kwargs

Returns:

query(queryEngine, query=None, vendorSpecific=None, **kwargs)
See Also: queryResponse()

Parameters

• queryEngine

• query

4.7. DataONE Client Library for Python 203

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

• vendorSpecific

• **kwargs

Returns:

getQueryEngineDescriptionResponse(queryEngine, vendorSpecific=None, **kwargs)
CNRead.getQueryEngineDescription(session, queryEngine) → QueryEngineDescription https://releases.
dataone.org/online/api-document ation-v2.0.1/apis/CN_APIs.html#CNRead.getQueryEngineDescription.

Parameters

• queryEngine

• vendorSpecific

• **kwargs

Returns:

getQueryEngineDescription(queryEngine, vendorSpecific=None, **kwargs)
See Also: getQueryEngineDescriptionResponse()

Parameters

• queryEngine

• vendorSpecific

• **kwargs

Returns:

setRightsHolderResponse(pid, userId, serialVersion, vendorSpecific=None)
CNAuthorization.setRightsHolder(session, pid, userId, serialVersion)

→ Identifier https://releases.dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNAuthorization.setRightsHolder.

Parameters

• pid

• userId

• serialVersion

• vendorSpecific

Returns:

setRightsHolder(pid, userId, serialVersion, vendorSpecific=None)
See Also: setRightsHolderResponse()

Parameters

• pid

• userId

• serialVersion

• vendorSpecific

Returns:

setAccessPolicyResponse(pid, accessPolicy, serialVersion, vendorSpecific=None)
CNAuthorization.setAccessPolicy(session, pid, accessPolicy, serialVersion) → boolean https://releases.
dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNAuthorization.setAccessPolicy.

204 Chapter 4. Contents

https://releases.dataone.org/online/api-document
https://releases.dataone.org/online/api-document
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

Parameters

• pid

• accessPolicy

• serialVersion

• vendorSpecific

Returns:

setAccessPolicy(pid, accessPolicy, serialVersion, vendorSpecific=None)
See Also: setAccessPolicyResponse()

Parameters

• pid

• accessPolicy

• serialVersion

• vendorSpecific

Returns:

registerAccountResponse(person, vendorSpecific=None)
CNIdentity.registerAccount(session, person) → Subject https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.registerAccount.

Parameters

• person

• vendorSpecific

Returns:

registerAccount(person, vendorSpecific=None)
See Also: registerAccountResponse()

Parameters

• person

• vendorSpecific

Returns:

updateAccountResponse(subject, person, vendorSpecific=None)
CNIdentity.updateAccount(session, person) → Subject https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.updateAccount.

Parameters

• subject

• person

• vendorSpecific

Returns:

updateAccount(subject, person, vendorSpecific=None)
See Also: updateAccountResponse()

Parameters

4.7. DataONE Client Library for Python 205

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

• subject

• person

• vendorSpecific

Returns:

verifyAccountResponse(subject, vendorSpecific=None)
CNIdentity.verifyAccount(session, subject) → boolean https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.verifyAccount.

Parameters

• subject

• vendorSpecific

Returns:

verifyAccount(subject, vendorSpecific=None)
See Also: verifyAccountResponse()

Parameters

• subject

• vendorSpecific

Returns:

getSubjectInfoResponse(subject, vendorSpecific=None)
CNIdentity.getSubjectInfo(session, subject) → SubjectList https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.getSubjectInfo.

Parameters

• subject

• vendorSpecific

Returns:

getSubjectInfo(subject, vendorSpecific=None)
See Also: getSubjectInfoResponse()

Parameters

• subject

• vendorSpecific

Returns:

listSubjectsResponse(query, status=None, start=None, count=None, vendorSpecific=None)
CNIdentity.listSubjects(session, query, status, start, count) → SubjectList https://releases.dataone.org/
online/api- documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.listSubjects.

Parameters

• query

• status

• start

• count

• vendorSpecific

206 Chapter 4. Contents

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

Returns:

listSubjects(query, status=None, start=None, count=None, vendorSpecific=None)
See Also: listSubjectsResponse()

Parameters

• query

• status

• start

• count

• vendorSpecific

Returns:

mapIdentityResponse(primarySubject, secondarySubject, vendorSpecific=None)
CNIdentity.mapIdentity(session, subject) → boolean https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.mapIdentity.

Parameters

• primarySubject

• secondarySubject

• vendorSpecific

Returns:

mapIdentity(primarySubject, secondarySubject, vendorSpecific=None)
See Also: mapIdentityResponse()

Parameters

• primarySubject

• secondarySubject

• vendorSpecific

Returns:

removeMapIdentityResponse(subject, vendorSpecific=None)
CNIdentity.removeMapIdentity(session, subject) → boolean https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.removeMapIdentity.

Parameters

• subject

• vendorSpecific

Returns:

removeMapIdentity(subject, vendorSpecific=None)
See Also: removeMapIdentityResponse()

Parameters

• subject

• vendorSpecific

Returns:

4.7. DataONE Client Library for Python 207

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

denyMapIdentityResponse(subject, vendorSpecific=None)
CNIdentity.denyMapIdentity(session, subject) → boolean https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.denyMapIdentity.

Parameters

• subject

• vendorSpecific

Returns:

denyMapIdentity(subject, vendorSpecific=None)
See Also: denyMapIdentityResponse()

Parameters

• subject

• vendorSpecific

Returns:

requestMapIdentityResponse(subject, vendorSpecific=None)
CNIdentity.requestMapIdentity(session, subject) → boolean https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.requestMapIdentity.

Parameters

• subject

• vendorSpecific

Returns:

requestMapIdentity(subject, vendorSpecific=None)
See Also: requestMapIdentityResponse()

Parameters

• subject

• vendorSpecific

Returns:

confirmMapIdentityResponse(subject, vendorSpecific=None)
CNIdentity.confirmMapIdentity(session, subject) → boolean https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.confirmMapIdentity.

Parameters

• subject

• vendorSpecific

Returns:

confirmMapIdentity(subject, vendorSpecific=None)
See Also: confirmMapIdentityResponse()

Parameters

• subject

• vendorSpecific

Returns:

208 Chapter 4. Contents

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api

DataONE Python Products

createGroupResponse(group, vendorSpecific=None)
CNIdentity.createGroup(session, groupName) → Subject https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.createGroup.

Parameters

• group

• vendorSpecific

Returns:

createGroup(group, vendorSpecific=None)
See Also: createGroupResponse()

Parameters

• group

• vendorSpecific

Returns:

updateGroupResponse(group, vendorSpecific=None)
CNIdentity.addGroupMembers(session, groupName, members) → boolean https://releases.dataone.org/
online/api- documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.addGroupMembers.

Parameters

• group

• vendorSpecific

Returns:

updateGroup(group, vendorSpecific=None)
See Also: updateGroupResponse()

Parameters

• group

• vendorSpecific

Returns:

setReplicationStatusResponse(pid, nodeRef, status, dataoneError=None, vendorSpe-
cific=None)

CNReplication.setReplicationStatus(session, pid, nodeRef, status, failure) → boolean https://releases.
dataone.org/online/api-documentatio n-v2.0.1/apis/CN_APIs.html#CNReplication.setReplicationStatus.

Parameters

• pid

• nodeRef

• status

• dataoneError

• vendorSpecific

Returns:

setReplicationStatus(pid, nodeRef, status, dataoneError=None, vendorSpecific=None)
See Also: setReplicationStatusResponse()

Parameters

4.7. DataONE Client Library for Python 209

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api-documentatio
https://releases.dataone.org/online/api-documentatio

DataONE Python Products

• pid

• nodeRef

• status

• dataoneError

• vendorSpecific

Returns:

updateReplicationMetadataResponse(pid, replicaMetadata, serialVersion, vendorSpe-
cific=None)

CNReplication.updateReplicationMetadata(session, pid, replicaMetadata, serialVersion)
→ boolean https://releases.dataone.org/online/api- documentation-v2.0.1/apis/CN_AP
Is.html#CNReplication.updateReplicationMetadata Not implemented.

Parameters

• pid

• replicaMetadata

• serialVersion

• vendorSpecific

Returns:

updateReplicationMetadata(pid, replicaMetadata, serialVersion, vendorSpecific=None)
See Also: updateReplicationMetadataResponse()

Parameters

• pid

• replicaMetadata

• serialVersion

• vendorSpecific

Returns:

setReplicationPolicyResponse(pid, policy, serialVersion, vendorSpecific=None)
CNReplication.setReplicationPolicy(session, pid, policy, serialVersion) → boolean https://releases.
dataone.org/online/api-docume ntation-v2.0.1/apis/CN_APIs.html#CNReplication.setReplicationPolicy.

Parameters

• pid

• policy

• serialVersion

• vendorSpecific

Returns:

setReplicationPolicy(pid, policy, serialVersion, vendorSpecific=None)
See Also: setReplicationPolicyResponse()

Parameters

• pid

• policy

210 Chapter 4. Contents

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api-docume
https://releases.dataone.org/online/api-docume

DataONE Python Products

• serialVersion

• vendorSpecific

Returns:

isNodeAuthorizedResponse(targetNodeSubject, pid, vendorSpecific=None)
CNReplication.isNodeAuthorized(session, targetNodeSubject, pid, replicatePer-
mission) → boolean() https://releases.dataone.org/online/api- documentation-
v2.0.1/apis/CN_APIs.html#CNReplication.isNodeAuthorized.

Parameters

• targetNodeSubject

• pid

• vendorSpecific

Returns:

isNodeAuthorized(targetNodeSubject, pid, vendorSpecific=None)
See Also: isNodeAuthorizedResponse()

Parameters

• targetNodeSubject

• pid

• vendorSpecific

Returns:

deleteReplicationMetadataResponse(pid, nodeId, serialVersion, vendorSpecific=None)
CNReplication.deleteReplicationMetadata(session, pid, policy, serialVersion)

→ boolean https://releases.dataone.org/online/api-docume ntation-v2.0.1/apis/CN_APIs.html#CNReplication.deleteReplicationMetadat
a.

Parameters

• pid

• nodeId

• serialVersion

• vendorSpecific

Returns:

deleteReplicationMetadata(pid, nodeId, serialVersion, vendorSpecific=None)
See Also: deleteReplicationMetadataResponse()

Parameters

• pid

• nodeId

• serialVersion

• vendorSpecific

Returns:

4.7. DataONE Client Library for Python 211

https://releases.dataone.org/online/api
https://releases.dataone.org/online/api-docume

DataONE Python Products

updateNodeCapabilitiesResponse(nodeId, node, vendorSpecific=None)
CNRegister.updateNodeCapabilities(session, nodeId, node) → boolean https://releases.dataone.org/
online/api-documentation-v2.0.1/apis/CN_AP Is.html#CNRegister.updateNodeCapabilities.

Parameters

• nodeId

• node

• vendorSpecific

Returns:

updateNodeCapabilities(nodeId, node, vendorSpecific=None)
See Also: updateNodeCapabilitiesResponse()

Parameters

• nodeId

• node

• vendorSpecific

Returns:

registerResponse(node, vendorSpecific=None)
CNRegister.register(session, node) → NodeReference https://releases.dataone.org/online/api-
documentation-v2.0.1/apis/CN_APIs.html#CNRegister.register.

Parameters

• node

• vendorSpecific

Returns:

register(node, vendorSpecific=None)
See Also: registerResponse()

Parameters

• node

• vendorSpecific

Returns:

d1_client.cnclient_1_1 module

class d1_client.cnclient_1_1.CoordinatingNodeClient_1_1(*args, **kwargs)
Bases: d1_client.baseclient_1_1.DataONEBaseClient_1_1, d1_client.cnclient.
CoordinatingNodeClient

Extend DataONEBaseClient_1_1 and CoordinatingNodeClient with functionality for Coordinating nodes that
was added in v1.1 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

212 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_AP
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_AP
https://releases.dataone.org/online/api
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

DataONE Python Products

d1_client.cnclient_1_2 module

class d1_client.cnclient_1_2.CoordinatingNodeClient_1_2(*args, **kwargs)
Bases: d1_client.baseclient_1_2.DataONEBaseClient_1_2, d1_client.cnclient.
CoordinatingNodeClient

Extend DataONEBaseClient_1_2 and CoordinatingNodeClient with functionality for Coordinating nodes that
was added in v1.1 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

d1_client.cnclient_2_0 module

class d1_client.cnclient_2_0.CoordinatingNodeClient_2_0(*args, **kwargs)
Bases: d1_client.baseclient_2_0.DataONEBaseClient_2_0, d1_client.
cnclient_1_2.CoordinatingNodeClient_1_2

Extend DataONEBaseClient_2_0 and CoordinatingNodeClient_1_2 with functionality for Coordinating nodes
that was added in v2.0 of the DataONE infrastructure.

Updated in v2:

• CNCore.listFormats() → ObjectFormatList

• CNRead.listObjects(session[, fromDate][, toDate][, formatId]

• MNRead.listObjects(session[, fromDate][, toDate][, formatId]

The base implementations of listFormats() and listObjects() handle v2 when called through this class.

https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

deleteResponse(pid)
CNCore.delete(session, id) → Identifier DELETE /object/{id}

Parameters pid

Returns:

delete(pid)
See Also: deleteResponse()

Parameters pid

Returns:

synchronizeResponse(pid, vendorSpecific=None)
CNRead.synchronize(session, pid) → boolean POST /synchronize.

Args: pid: vendorSpecific:

synchronize(pid, vendorSpecific=None)
See Also: synchronizeResponse() Args: pid: vendorSpecific:

Returns:

4.7. DataONE Client Library for Python 213

https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html

DataONE Python Products

viewResponse(theme, did)

view(theme, did)

listViewsResponse()

listViews()

echoCredentialsResponse()

echoCredentials()

echoSystemMetadataResponse(sysmeta_pyxb)

echoSystemMetadata(sysmeta_pyxb)

echoIndexedObjectResponse(queryEngine, sysmeta_pyxb, obj)

echoIndexedObject(queryEngine, sysmeta_pyxb, obj)

d1_client.d1client module

Perform high level operations against the DataONE infrastructure.

The other Client classes are specific to CN or MN and to architecture version. This class provides a more abstract
interface that can be used for interacting with any DataONE node regardless of type and version.

class d1_client.d1client.DataONEClient
Bases: object

d1_client.d1client.get_api_major_by_base_url(base_url, *client_arg_list,
**client_arg_dict)

Read the Node document from a node and return an int containing the latest D1 API version supported by the
node.

The Node document can always be reached through the v1 API and will list services for v1 and any later APIs
versions supported by the node.

d1_client.d1client.get_client_type(d1_client_obj)

d1_client.d1client.get_version_tag_by_d1_client(d1_client_obj)

d1_client.d1client.get_client_class_by_version_tag(api_major)

d1_client.mnclient module

class d1_client.mnclient.MemberNodeClient(*args, **kwargs)
Bases: d1_client.baseclient.DataONEBaseClient

Extend DataONEBaseClient by adding REST API wrappers for APIs that are available on Member Nodes.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

getCapabilitiesResponse(vendorSpecific=None)

getCapabilities(vendorSpecific=None)

getChecksumResponse(pid, checksumAlgorithm=None, vendorSpecific=None)

214 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html

DataONE Python Products

getChecksum(pid, checksumAlgorithm=None, vendorSpecific=None)

synchronizationFailedResponse(message, vendorSpecific=None)

synchronizationFailed(message, vendorSpecific=None)

createResponse(pid, obj, sysmeta_pyxb, vendorSpecific=None)

create(pid, obj, sysmeta_pyxb, vendorSpecific=None)

updateResponse(pid, obj, newPid, sysmeta_pyxb, vendorSpecific=None)

update(pid, obj, newPid, sysmeta_pyxb, vendorSpecific=None)

deleteResponse(pid, vendorSpecific=None)

delete(pid, vendorSpecific=None)

systemMetadataChangedResponse(pid, serialVersion, dateSysMetaLastModified, vendorSpe-
cific=None)

systemMetadataChanged(pid, serialVersion, dateSysMetaLastModified, vendorSpecific=None)

replicateResponse(sysmeta_pyxb, sourceNode, vendorSpecific=None)

replicate(sysmeta_pyxb, sourceNode, vendorSpecific=None)

getReplicaResponse(pid, vendorSpecific=None)

getReplica(pid, vendorSpecific=None)

d1_client.mnclient_1_1 module

class d1_client.mnclient_1_1.MemberNodeClient_1_1(*args, **kwargs)
Bases: d1_client.baseclient_1_1.DataONEBaseClient_1_1, d1_client.mnclient.
MemberNodeClient

Extend DataONEBaseClient_1_1 and MemberNodeClient with functionality for Member nodes that was added
in v1.1 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

d1_client.mnclient_1_2 module

class d1_client.mnclient_1_2.MemberNodeClient_1_2(*args, **kwargs)
Bases: d1_client.baseclient_1_2.DataONEBaseClient_1_2, d1_client.mnclient.
MemberNodeClient

Extend DataONEBaseClient_1_2 and MemberNodeClient with functionality for Member nodes that was added
in v1.2 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

viewResponse(theme, did, **kwargs)

4.7. DataONE Client Library for Python 215

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html
https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html

DataONE Python Products

view(theme, did, **kwargs)

listViewsResponse(**kwargs)

listViews(**kwargs)

getPackageResponse(did, packageType=’application/bagit-097’, **kwargs)

getPackage(did, packageType=’application/bagit-097’, **kwargs)

d1_client.mnclient_2_0 module

class d1_client.mnclient_2_0.MemberNodeClient_2_0(*args, **kwargs)
Bases: d1_client.baseclient_2_0.DataONEBaseClient_2_0, d1_client.
mnclient_1_2.MemberNodeClient_1_2

Extend DataONEBaseClient_2_0 and MemberNodeClient_1_2 with functionality for Member nodes that was
added in v2.0 of the DataONE infrastructure.

For details on how to use these methods, see:

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html

__init__(*args, **kwargs)
See baseclient.DataONEBaseClient for args.

d1_client.object_format_info module

d1_client.session module

class d1_client.session.Session(base_url, cert_pem_path=None, cert_key_path=None,
**kwargs_dict)

Bases: object

__init__(base_url, cert_pem_path=None, cert_key_path=None, **kwargs_dict)
The Session improves performance by keeping connection related state and allowing it to be reused in
multiple API calls to a DataONE Coordinating Node or Member Node. This includes:

• A connection pool

• HTTP persistent connections (HTTP/1.1 and keep-alive)

Based on Python Requests: - http://docs.python-requests.org/en/master/ - http://docs.python-requests.org/
en/master/user/advanced/#session-objects

Parameters

• base_url – DataONE Node REST service BaseURL.

• cert_pem_path – Path to a PEM formatted certificate file. If provided and

accepted by the remote node, the subject for which the certificate was issued is added to the authenticated
context in which API calls are made by the client. Equivalent subjects and group subjects may be implic-
itly included as well. If the certificate is used together with an JWT token, the two sets of subjects are
combined. :type cert_pem_path: string

Parameters

• cert_key_path (string) – Path to a PEM formatted file that contains the private key
for the certificate file. Only required if the certificate file does not itself contain the private
key.

216 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/user/advanced/#session-objects
http://docs.python-requests.org/en/master/user/advanced/#session-objects

DataONE Python Products

• jwt_token – Base64 encoded JSON Web Token. If provided and accepted by the

remote node, the subject for which the token was issued is added to the authenticated context in which API
calls are made by the client. Equivalent subjects and group subjects may be implicitly included as well.
If the token is used together with an X.509 certificate, the two sets of subjects are combined. :type token:
string

Parameters

• timeout_sec (float, int, None) – Time in seconds that requests will wait for
a response. None, 0, 0.0 disables timeouts. Default is DEFAULT_HTTP_TIMEOUT,
currently 60 seconds.

• retries (int) – Set number of times to try a request before failing. If not set, retries
are still performed, using the default number of retries. To disable retries, set to 1.

• headers (dictionary) – headers that will be included with all connections.

• query (dictionary) – URL query parameters that will be included with all connec-
tions.

• use_stream (bool) – Use streaming response. When enabled, responses must be com-
pletely read to free up the connection for reuse. (default:False)

• verify_tls (bool or path) – Verify the server side TLS/SSL certificate. (default:
True). Can also hold a path that points to a trusted CA bundle

• suppress_verify_warnings (bool) – Suppress the warnings issued when
verify_tls is set to False.

• user_agent (str) – Override the default User-Agent string used by d1client.

• charset (str) – Override the default Charset used by d1client. (default: utf-8)

Returns None

base_url

GET(rest_path_list, **kwargs)
Send a GET request. See requests.sessions.request for optional parameters.

Returns Response object

HEAD(rest_path_list, **kwargs)
Send a HEAD request. See requests.sessions.request for optional parameters.

Returns Response object

POST(rest_path_list, **kwargs)
Send a POST request with optional streaming multipart encoding. See requests.sessions.request for op-
tional parameters. To post regular data, pass a string, iterator or generator as the data argument. To post
a multipart stream, pass a dictionary of multipart elements as the fields argument. E.g.:

fields = { ‘field0’: ‘value’, ‘field1’: ‘value’, ‘field2’: (‘filename.xml’, open(‘file.xml’, ‘rb’), ‘applica-
tion/xml’)

}

Returns Response object

PUT(rest_path_list, **kwargs)
Send a PUT request with optional streaming multipart encoding. See requests.sessions.request for optional
parameters. See post() for parameters.

Returns Response object

4.7. DataONE Client Library for Python 217

DataONE Python Products

DELETE(rest_path_list, **kwargs)
Send a DELETE request. See requests.sessions.request for optional parameters.

Returns Response object

OPTIONS(rest_path_list, **kwargs)
Send a OPTIONS request. See requests.sessions.request for optional parameters.

Returns Response object

get_curl_command_line(method, url, **kwargs)
Get request as cURL command line for debugging.

dump_request_and_response(response)
Return a string containing a nicely formatted representation of the request and response objects for logging
and debugging.

• Note: Does not work if the request or response body is a MultipartEncoder object.

d1_client.solr_client module

Basic Solr client.

Based on: http://svn.apache.org/viewvc/lucene/solr/tags/release-1.2.0/ client/python/solr.py

DataONE provides an index of all objects stored in the Member Nodes that form the DataONE federation. The index
is stored in an Apache Solr database and can be queried with the SolrClient.

The DataONE Solr index provides information only about objects for which the caller has access. When querying
the index without authenticating, only records related to public objects can be retrieved. To authenticate, provide a
certificate signed by CILogon when creating the client.

Example:

Connect to the DataONE Coordinating Nodes in the default (production) environment.
c = d1_client.solr_client.SolrConnection()

search_result = c.search({
'q': 'id:[* TO *]', # Filter for search
'rows': 10, # Number of results to return
'fl': 'formatId', # List of fields to return for each result

})

pprint.pprint(search_result)

class d1_client.solr_client.SolrClient(*args, **kwargs)
Bases: d1_client.baseclient_1_2.DataONEBaseClient_1_2

Extend DataONEBaseClient_1_2 with functions for querying Solr indexes hosted on CNs and MNs.

Example:

solr_client = SolrClient(‘https://cn.dataone.org/cn’)

For the supported keyword args, see:

d1_client.session.Session()

• Most methods take a **query_dict as a parameter. It allows passing any number of query parameters that
will be sent to Solr.

218 Chapter 4. Contents

http://svn.apache.org/viewvc/lucene/solr/tags/release-1.2.0/
https://cn.dataone.org/cn

DataONE Python Products

Pass the query parameters as regular keyword arguments. E.g.:

solr_client.search(q=’id:abc*’, fq=’id:def*’)

To pass multiple query parameters of the same type, pass a list. E.g., to pass multiple filter query (fq) parameters:

solr_client.search(q=’id:abc*’, fq=[‘id:def*’, ‘id:ghi’])

• Do not encode the query parameters before passing them to the methods.

For more information about DataONE’s Solr index, see:

https://releases.dataone.org/online/api-documentation-v2.0/design/SearchMetadata.html

search(**query_dict)
Search the Solr index.

Example:

result_dict = search(q=[‘id:abc*’], fq=[‘id:def*’, ‘id:ghi’])

get(doc_id)
Retrieve the specified document.

get_ids(start=0, rows=1000, **query_dict)
Retrieve a list of identifiers for documents matching the query.

count(**query_dict)
Return the number of entries that match query.

get_field_values(name, maxvalues=-1, sort=True, **query_dict)
Retrieve the unique values for a field, along with their usage counts.

Parameters

• name (string) – Name of field for which to retrieve values

• sort – Sort the result

• maxvalues (int) – Maximum number of values to retrieve. Default is -1, which causes
retrieval of all values.

Returns dict of {fieldname: [[value, count], . . .], }

get_field_min_max(name, **query_dict)
Returns the minimum and maximum values of the specified field. This requires two search calls to the
service, each requesting a single value of a single field.

@param name(string) Name of the field @param q(string) Query identifying range of records for min and
max values @param fq(string) Filter restricting range of query

@return list of [min, max]

field_alpha_histogram(name, n_bins=10, include_queries=True, **query_dict)
Generates a histogram of values from a string field.

Output is: [[low, high, count, query], . . .]. Bin edges is determined by equal division of the fields.

delete(doc_id)

delete_by_query(query)

add(**fields)

add_docs(docs)
docs is a list of fields that are a dictionary of name:value for a record.

commit(waitFlush=True, waitSearcher=True, optimize=False)

4.7. DataONE Client Library for Python 219

https://releases.dataone.org/online/api-documentation-v2.0/design/SearchMetadata.html

DataONE Python Products

class d1_client.solr_client.SolrRecordTransformerBase
Bases: object

Base for Solr record transformers.

Used to transform a Solr search response document into some other form, such as a dictionary or list of values.

transform(record)

class d1_client.solr_client.SolrArrayTransformer(cols=None)
Bases: d1_client.solr_client.SolrRecordTransformerBase

A transformer that returns a list of values for the specified columns.

transform(record)

class d1_client.solr_client.SolrSearchResponseIterator(client, page_size=100,
max_records=1000, trans-
former=<d1_client.solr_client.SolrRecordTransformerBase
object>, **query_dict)

Bases: object

Performs a search against a Solr index and acts as an iterator to retrieve all the values.

process_row(row)
Override this method in derived classes to reformat the row response.

class d1_client.solr_client.SolrArrayResponseIterator(client, page_size=100,
cols=None, **query_dict)

Bases: d1_client.solr_client.SolrSearchResponseIterator

Returns an iterator that operates on a Solr result set.

The output for each document is a list of values for the columns specified in the cols parameter of the constructor.

class d1_client.solr_client.SolrSubsampleResponseIterator(client, q, fq=None,
fields=’*’,
page_size=100,
n_samples=10000,
trans-
former=<d1_client.solr_client.SolrRecordTransformerBase
object>)

Bases: d1_client.solr_client.SolrSearchResponseIterator

Returns a pseudo-random subsample of the result set.

Works by calculating the number of pages required for the entire data set and taking a random sample of pages
until n_samples can be retrieved. So pages are random, but records within a page are not.

class d1_client.solr_client.SolrValuesResponseIterator(client, field,
page_size=1000,
**query_dict)

Bases: object

Iterates over a Solr get values response.

This returns a list of distinct values for a particular field.

__init__(client, field, page_size=1000, **query_dict)
Initialize.

@param client(SolrConnection) An instance of a solr connection to use. @param field(string) name of the
field from which to retrieve values @param q(string) The Solr query to restrict results @param fq(string)
A facet query, restricts the set of rows that q is applied to @param fields(string) A comma delimited list of
field names to return @param page_size(int) Number of rows to retrieve in each call.

220 Chapter 4. Contents

DataONE Python Products

d1_client.util module

d1_client.util.normalize_request_response_dump(dump_str)

4.8 Indices and tables

• genindex

• modindex

• search

4.9 DataONE Test Utilities

The DataONE Test Utilities package contains various utilities for testing DataONE infrastructure components and
clients. These include the Instance Generator, used for creating randomized System Metadata documents, and the
Stress Tester, used for stress testing of Member Node implementations. The stress_tester can create many concurrent
connections to a Member Node and simultaneously create any number of randomly generated objects while running
queries and object retrievals. There are also various Utilities.

Contents:

4.9.1 Build and install

The DataONE Test Utilities for Python are distributed via PyPI, the Python Package Index.

Set up server packages:

• The build environment for DataONE Python extensions and lxml

• Commands used in the install

$ sudo apt install --yes build-essential python-dev libssl-dev \
libxml2-dev libxslt-dev openssl

Install pip (Python package installer):

$ sudo apt install --yes python-pip; sudo pip install pip --upgrade;

Install the Test Utilities and their dependencies, including Multi-Mechanize. This will also automatically build several
Python C extensions:

$ sudo pip install dataone.test_utilities

4.9.2 API

d1_test package

DataONE Test Utilities.

The DataONE Test Utilities package contains various utilities for testing DataONE infrastructure components and
clients. These include:

4.8. Indices and tables 221

http://multimechanize.com

DataONE Python Products

Instance Generator: Used for creating randomized System Metadata documents

Stress Tester: Used for stress testing of Member Node implementations. The stress_tester creates a configurable
number of concurrent connections to a Member Node and populates the MN with randomly generated objects while
running queries and object retrievals.

Utilities: Misc test utilities.

Although this directory is not a package, this __init__.py file is required for pytest to be able to reach test directories
below this directory.

Subpackages

d1_test.instance_generator package

Submodules

d1_test.instance_generator.access_policy module

d1_test.instance_generator.checksum module

Generate random Checksum.

d1_test.instance_generator.checksum.random_checksum_algorithm()

d1_test.instance_generator.checksum.generate()
Generate a Checksum object for a random string, using random algorithm.

d1_test.instance_generator.date_time module

d1_test.instance_generator.format_id module

Generate random formatId.

class d1_test.instance_generator.format_id.Generate
Bases: object

d1_test.instance_generator.identifier module

Generate random Identifier.

d1_test.instance_generator.identifier.generate_pid(prefix_str=’PID_’)

d1_test.instance_generator.identifier.generate_sid(prefix_str=’SID_’, probabil-
ity=1.0)

Generate a SID ‘‘probability‘‘*100 percent of the time.

Else return None.

d1_test.instance_generator.identifier.generate(prefix_str=’DID_’, min_len=5,
max_len=20)

Generate instance of Identifier holding a random Unicode string.

222 Chapter 4. Contents

DataONE Python Products

d1_test.instance_generator.identifier.generate_bare(prefix_str=’DID_’, min_len=5,
max_len=20)

Generate bare Identifier holding a random Unicode string min and max length does not include the length of the
prefix.

d1_test.instance_generator.media_type module

Generate random MediaType.

d1_test.instance_generator.media_type.generate(min_properties=0, max_properties=5)

d1_test.instance_generator.names module

Random person first names.

d1_test.instance_generator.names.random_names(count=10)
Returns a random selection of count names.

No repetitions.

d1_test.instance_generator.node_ref module

Generate random NodeReference.

d1_test.instance_generator.node_ref.generate(prefix=’urn:node:’, min_len=5,
max_len=20)

Generate instance of nodeReference holding a urn:node:<random> string.

d1_test.instance_generator.node_ref.generate_bare(prefix=”, min_len=5, max_len=20)
Generate a random Unicode string.

d1_test.instance_generator.person module

Generate random Person.

d1_test.instance_generator.person.generate()

d1_test.instance_generator.random_data module

Generate random data of various types.

d1_test.instance_generator.random_data.random_mn(min_len=1, max_len=2)

d1_test.instance_generator.random_data.random_cn(min_len=1, max_len=1)

d1_test.instance_generator.random_data.random_subj(min_len=1, max_len=2,
fixed_len=None)

d1_test.instance_generator.random_data.random_lower_ascii(min_len=2,
max_len=2)

d1_test.instance_generator.random_data.random_bytes(num_bytes, max_bytes=None)
Return a bytes object containing random bytes.

• If only num_bytes is set, exactly num_bytes are returned.

4.9. DataONE Test Utilities 223

urn:node

DataONE Python Products

• If both num_bytes and max_bytes are set, a random number of bytes between num_bytes and
max_bytes (including) is returned.

d1_test.instance_generator.random_data.random_bytes_file(num_bytes,
max_bytes=None)

Return a file-like object containing random bytes.

• If only num_bytes is set, exactly num_bytes are returned.

• If both num_bytes and max_bytes is set, a random number of bytes between num_bytes and
max_bytes (including) is returned.

d1_test.instance_generator.random_data.random_unicode_name()
Return a random Unicode name.

d1_test.instance_generator.random_data.random_unicode_name_list(n_names)
Return a list of random Unicode names.

Names may be repeated

d1_test.instance_generator.random_data.random_unicode_name_unique_list(n_names)
Return a list of random Unicode names.

Names are unique

d1_test.instance_generator.random_data.random_word()

d1_test.instance_generator.random_data.random_3_words()
Return 3 random words separated by a random separator.

d1_test.instance_generator.random_data.random_word_list(n_words)
Return a list of random words.

Words may be repeated

d1_test.instance_generator.random_data.random_word_unique_list(n_names)
Return a list of random words.

Words are unique

d1_test.instance_generator.random_data.random_unicode_char()
Return a random Unicode character (from a limited set)

d1_test.instance_generator.random_data.random_unicode_char_no_whitespace()
Return a random Unicode character (from a limited set, no whitespace)

d1_test.instance_generator.random_data.random_unicode_str(num_chars=5,
max_chars=None)

Return a str containing random Unicode characters.

• If only num_chars is set, exactly num_chars characters are returned.

• If both num_chars and max_chars are set, a random number of characters between num_chars and
max_chars (including) is returned.

d1_test.instance_generator.random_data.random_email()

d1_test.instance_generator.random_data.random_bool()

d1_test.instance_generator.random_data.random_bool_factor(f=0.5)
Return random bool value that is more likely to be True the closer f is to 1.0.

• f == [0, 1)

• f = 1.0: Always return True

• f = 0.1: Return True 10% of the time

224 Chapter 4. Contents

DataONE Python Products

d1_test.instance_generator.random_data.random_sized_sample(seq, min_size=1,
max_size=10)

Return a random number of randomly selected values from seq

If it’s not possible to meet the min_size and/or max_size criteria due to the number of values in seq, a best
effort is made.

d1_test.instance_generator.random_data.random_sized_sample_pop(seq,
min_size=1,
max_size=10)

Return a random number of randomly selected values from seq, then remove them from seq.

If it’s not possible to meet the min_size and/or max_size criteria due to the number of values in seq, a best
effort is made.

d1_test.instance_generator.random_data.random_choice_pop(seq)

d1_test.instance_generator.random_data.random_within_range(num_bytes,
max_bytes=None)

Return a random int within range.

• If only num_bytes is set, return num_bytes

• If both num_bytes and max_bytes are set, return random int within between num_bytes and
max_bytes (including).

d1_test.instance_generator.replica module

d1_test.instance_generator.replication_policy module

Generate random ReplicationPolicy.

d1_test.instance_generator.replication_policy.generate(min_pref=0, max_pref=4,
min_block=0,
max_block=4)

d1_test.instance_generator.replication_status module

Generate random ReplicationStatus.

d1_test.instance_generator.replication_status.generate()

d1_test.instance_generator.sciobj module

d1_test.instance_generator.subject module

Generate random Subject.

d1_test.instance_generator.subject.generate()

d1_test.instance_generator.subject.generate_bare()

4.9. DataONE Test Utilities 225

DataONE Python Products

d1_test.instance_generator.system_metadata module

d1_test.instance_generator.unicode_names module

Unicode test names.

Source: http://www.i18nguy.com/unicode-example.html.

d1_test.instance_generator.unicode_test_strings module

A set of Unicode strings that are particularly likely to trip up the unwary.

d1_test.instance_generator.user_agent module

Return a randomly selected user agent string, picked from a list of common user agents.

class d1_test.instance_generator.user_agent.Generate
Bases: object

d1_test.instance_generator.words module

Random words.

A selection of 1000 words pulled randomly from /usr/share/dict/words using the randomWords method below.

d1_test.instance_generator.words.random_words(count=100, supplemen-
tal_word_file_path=’/usr/share/dict/words’)

Return a random selection of count words from WORDS_1K.

Include words from file if number of words requested is more than available in WORDS_1K.

d1_test.mock_api package

Submodules

d1_test.mock_api.catch_all module

d1_test.mock_api.create module

Mock a generic POST request by echoing the posted body.

A DataONEException can be triggered by adding a custom header. See d1_exception.py

d1_test.mock_api.create.add_callback(base_url)

d1_test.mock_api.create.pack_echo_header(body_bytes, headers, url_obj)

d1_test.mock_api.create.unpack_echo_header(header_dict)

226 Chapter 4. Contents

http://www.i18nguy.com/unicode-example.html

DataONE Python Products

d1_test.mock_api.d1_exception module

Mock DataONEException.

A DataONEException can be triggered in any of the mock APIs by adding a custom header named “trigger” with the
status code of the error to trigger, using the vendorSpecific parameter.

E.g.:

client.create(. . . , vendorSpecific={‘trigger’: ‘401’})

d1_test.mock_api.d1_exception.trigger_by_pid(request, pid)

d1_test.mock_api.d1_exception.trigger_by_header(request)

d1_test.mock_api.d1_exception.trigger_by_status_code(request, status_code_int)

d1_test.mock_api.d1_exception.create_regular_d1_exception(status_code_int)

d1_test.mock_api.d1_exception.create_header_d1_exception(status_code_int)

d1_test.mock_api.describe module

d1_test.mock_api.django_client module

Mock Requests to issue requests through the Django test client.

Django includes a test framework with a test client that provides an interface that’s similar to that of an HTTP client,
but calls Django internals directly. The client enables testing of most functionality of a Django app without actually
starting the app as a network service.

For testing GMN’s D1 REST interfaces, we want to issue the test requests via the D1 MN client. Without going
through the D1 MN client, we would have to reimplement much of what the client does, related to formatting and
parsing D1 REST requests.

This module is typically used in tests running under django.test.TestCase and requires an active Django context, such
as the one provided by ./manage.py test.

Usage:

import d1_test.mock_api.django_client as mock_django_client

@responses.activate def test_1000(self):

mock_django_client.add_callback(MOCK_MN_BASE_URL) d1_client =
d1_client.mnclient_2_0.MemberNodeClient_2_0(MOCK_MN_BASE_URL) node_pyxb =
d1_client.getCapabilities()

Note: for get(), GMN returns a StreamingHttpResponse that Requests detects as a streaming response and handles
accordingly. However, when returning a StreamingHttpResponse from Responses, no special handling occurs. This
breaks test code that converts streams to strings by accessing .content (production code should not do this since it
causes the entire stream to be buffered in memory). So we convert streaming responses to string before passing them
to Responses.

d1_test.mock_api.django_client.add_callback(base_url)

d1_test.mock_api.generate_identifier module

Mock:

4.9. DataONE Test Utilities 227

DataONE Python Products

CNCore.generateIdentifier(session, scheme[, fragment]) → Identifier https://releases.dataone.org/online/
api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.generateIdentifier MNStorage.generateIdentifier(session,
scheme[, fragment]) → Identifier https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#
MNStorage.generateIdentifier

A DataONEException can be triggered by adding a custom header. See d1_exception.py

d1_test.mock_api.generate_identifier.add_callback(base_url)

d1_test.mock_api.get module

d1_test.mock_api.get_capabilities module

d1_test.mock_api.get_format module

d1_test.mock_api.get_log_records module

d1_test.mock_api.get_system_metadata module

d1_test.mock_api.is_authorized module

d1_test.mock_api.list_formats module

d1_test.mock_api.list_nodes module

d1_test.mock_api.list_objects module

d1_test.mock_api.ping module

Mock a ping response.

CNCore.ping() → null https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.
ping MNRead.ping() → null https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#
MNCore.ping

A DataONEException can be triggered by adding a custom header. See d1_exception.py

d1_test.mock_api.ping.add_callback(base_url)

d1_test.mock_api.post module

Mock a generic POST request by echoing the posted body.

A DataONEException can be triggered by adding a custom header. See d1_exception.py

d1_test.mock_api.post.add_callback(base_url)

d1_test.mock_api.query_engine_description module

d1_test.mock_api.resolve module

228 Chapter 4. Contents

https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.generateIdentifier
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.generateIdentifier
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNStorage.generateIdentifier
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNStorage.generateIdentifier
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.ping
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/CN_APIs.html#CNCore.ping
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNCore.ping
https://releases.dataone.org/online/api-documentation-v2.0.1/apis/MN_APIs.html#MNCore.ping

DataONE Python Products

d1_test.mock_api.solr_query module

d1_test.mock_api.solr_search module

d1_test.mock_api.util module

d1_test.replication_tester package

Submodules

d1_test.replication_tester.replication_error module

exception d1_test.replication_tester.replication_error.ReplicationTesterError(value)
Bases: Exception

d1_test.replication_tester.replication_server module

class d1_test.replication_tester.replication_server.TestHTTPServer(options,
pid_unknown,
pid_not_authorized,
pid_known_and_authorized,
src_existing_pid_approve,
src_existing_pid_deny,
queue)

Bases: threading.Thread

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

stop()

class d1_test.replication_tester.replication_server.Handler(request,
client_address,
server)

Bases: http.server.SimpleHTTPRequestHandler

do_GET()
Serve a GET request.

do_PUT()

d1_test.replication_tester.replication_tester module

Test replication request handling in source and destination MNs.

RepTest is documented in the Utilities section of the dataone.test_utilities package on PyPI.

d1_test.replication_tester.replication_tester.main()

d1_test.replication_tester.replication_tester.create_test_object_on_mn(base_url,
pid)

4.9. DataONE Test Utilities 229

DataONE Python Products

class d1_test.replication_tester.replication_tester.ReplicationTester(options,
pid_unknown,
pid_not_authorized,
pid_known_and_authorized,
src_existing_pid_approve,
src_existing_pid_deny,
dst_existing_pid)

Bases: object

test_src_mn()

test_dst_mn()

d1_test.replication_tester.run_replication_tester module

d1_test.replication_tester.test_object_generator module

d1_test.replication_tester.test_object_generator.generate_random_ascii(prefix)

d1_test.replication_tester.test_object_generator.generate_science_object_with_sysmeta(pid,
in-
clude_revision_bool=False)

d1_test.utilities package

Submodules

d1_test.utilities.catch_multiprocessing_exception module

d1_test.utilities.create_dataone_test_certificate module

d1_test.utilities.create_from_file module

Create an object on a Member Node based on a local file.

d1_test.utilities.create_from_file.main()

d1_test.utilities.create_from_file.gen_sysmeta(pid, f, size, format_id, in-
clude_revision_bool, use_v1_bool)

Args:

pid: f: size: format_id: include_revision_bool: use_v1_bool:

d1_test.utilities.generate_sysmeta_for_sciobj module

d1_test.utilities.generate_test_subject_certs module

Create set of test certificates signed by the DataONE Test CA.

d1_test.utilities.generate_test_subject_certs.create_key_pair(key_type, n_bits)
Create a public/private key pair.

Parameters

230 Chapter 4. Contents

DataONE Python Products

• key_type (crypto.TYPE_RSA or crypto.TYPE_DSA) – Key type (RSA or
DSA).

• n_bits (int) – Number of bits to use in the key.

Returns Public/private key pair.

Return type PKey

d1_test.utilities.generate_test_subject_certs.create_cert_request(pkey, di-
gest=’md5’,
**name)

Create a certificate request.

Parameters

• pkey (PKey) – Key to associate with the request.

• digest (str) – Message-Digest algorithm to use for signing.

• **name – Name of the subject of the request.

Returns Certificate request.

Return type X509Req

Possible keyword arguments (**name): C - Country name ST - State or province name L - Locality name O
- Organization name OU - Organizational unit name CN - Common name emailAddress - E-mail address

d1_test.utilities.generate_test_subject_certs.create_session_extension(subject,
per-
sons,
groups)

Create the custom X.509 extension object in which DataONE passes session information.

Parameters subjects (list) – Subjects to store in session.

Returns X.509 v3 certificate extension.

Return type X509Extension

d1_test.utilities.generate_test_subject_certs.create_certificate(req,
xxx_todo_changeme,
serial,
xxx_todo_changeme1,
di-
gest=’md5’)

Generate a certificate given a certificate request.

Parameters

• req (X509Req) – Certificate reqeust.

• issuer_cert – Certificate of the issuer.

• issuer_key – Private key of the issuer.

• serial (str) – Serial number for certificate.

• not_before (int) – Timestamp (relative to now) for when the certificate starts being
valid.

• not_after (int) – Timestamp (relative to now) for when the certificate stops being valid.

• digest (str) – Digest method to use for signing.

4.9. DataONE Test Utilities 231

DataONE Python Products

Returns The signed certificate.

Return type X509

d1_test.utilities.generate_test_subject_certs.main()

d1_test.utilities.list_effective_subjects module

d1_test.utilities.my_subject module

Given a certificate, show the subject in DataONE format and optionally display included subject information such as
mapped identities and group memberships.

d1_test.utilities.my_subject.getSubjectFromName(xName)
Given a DN, returns a DataONE subject TODO: This assumes that RDNs are in reverse order. . .

@param

d1_test.utilities.my_subject.dumpExtensions(x509)

d1_test.utilities.my_subject.getSubjectInfoFromCert(x509)
Retrieve the SubjectInfo xml from the certificate, if present.

d1_test.utilities.my_subject.getSubjectFromCertFile(certFileName)

d1_test.utilities.pem_in_http_header module

Convert PEM formatted certificates to and from HTTP header compatible values.

For debugging certificate processing logic, it is sometimes convenient to pass the certificates via HTTP headers instead
of HTTPS.

d1_test.utilities.pem_in_http_header.pem_in_string_to_pem_in_http_header(pem_str)

d1_test.utilities.pem_in_http_header.pem_in_http_header_to_pem_in_string(header_str)

d1_test.utilities.populate_mn module

Populate a Member Node with randomly generated objects.

d1_test.utilities.populate_mn.main()

d1_test.utilities.test_object_generator module

d1_test.utilities.test_object_generator.generate_random_ascii(prefix,
num_chars=10)

d1_test.utilities.test_object_generator.generate_science_object_with_sysmeta(pid,
num_min_bytes,
num_max_bytes,
format_id=’application/octet-
stream’,
in-
clude_revision_bool=False,
use_v1_bool=False)

232 Chapter 4. Contents

DataONE Python Products

d1_test.utilities.urlencode module

URL encode / decode provided string.

Examples

$ python urlencode.py “http://example.com/data/mydata?row=24” http://example.com/data/mydata?row%3D24

$ python urlencode.py -d “http://example.com/data/mydata?row%3D24” http://example.com/data/mydata?row=24

$ python urlencode.py -p “http://example.com/data/mydata?row=24” http:%2F%2Fexample.com%2Fdata%
2Fmydata%3Frow=24

$ python urlencode.py -d -p “http:%2F%2Fexample.com%2Fdata%2Fmydata%3Frow=24” http://example.com/data/
mydata?row=24

$ python urlencode.py -p “http://example.com/data/mydata?row=24” | python urlencode.py -d -p -s http://example.
com/data/mydata?row=24

$ python urlencode.py “” %E0%B8%89%E0%B8%B1%E0%B8%99%E0%B8%81%E0%B8%B4%E0%B8%99%E0%B8%81%E0%B8%A3%E0%B8%B0%E0%B8%
8%E0%B8%81%E0%B9%84%E0%B8%94%E0%B9%89

d1_test.utilities.urlencode.process_input(input, decode=False, path=False)

Submodules

d1_test.d1_test_case module

d1_test.pycharm module

d1_test.sample module

d1_test.slender_node_test_client module

class d1_test.slender_node_test_client.SlenderNodeTestClient(sciobj_store_path=’./sciobj_store’,
keep_existing=False,
*args, **kwargs)

Bases: object

A simple drop-in replacement for a MN client, for use when developing and testing SlenderNode scripts.

• MN is simulated to the bare minimum required by SN scripts

• Objects are stored in local files instead of on an MN

• SID to PID dict is held in memory and dumped to file

• Most args are simply ignored

__init__(sciobj_store_path=’./sciobj_store’, keep_existing=False, *args, **kwargs)
Create the test client.

• Store the sciobj and sysmeta in sciobj_store_path

• sciobj_store_path is created if it does not exist

• If delete_existing is True, delete any existing files in sciobj_store_path

create(pid, sciobj_file, sysmeta_pyxb, *args, **kwargs)

4.9. DataONE Test Utilities 233

http://example.com/data/mydata?row=24
http://example.com/data/mydata?row%3D24
http://example.com/data/mydata?row%3D24
http://example.com/data/mydata?row=24
http://example.com/data/mydata?row=24
http:%2F%2Fexample.com%2Fdata%2Fmydata%3Frow=24
http:%2F%2Fexample.com%2Fdata%2Fmydata%3Frow=24
http:%2F%2Fexample.com%2Fdata%2Fmydata%3Frow=24
http://example.com/data/mydata?row=24
http://example.com/data/mydata?row=24
http://example.com/data/mydata?row=24
http://example.com/data/mydata?row=24
http://example.com/data/mydata?row=24

DataONE Python Products

update(old_pid, sciobj_file, new_pid, new_sysmeta_pyxb, *args, **kwargs)

get(did, *args, **kwargs)
Return a file-like object with the sciobj bytes.

getSystemMetadata(did, *args, **kwargs)
Return sysmeta_pyxb.

d1_test.test_files module

Utilities for loading test files.

d1_test.test_files.get_abs_test_file_path(rel_path)

d1_test.test_files.load_bin(rel_path)

d1_test.test_files.load_utf8_to_str(rel_path)
Load file, decode from UTF-8 and return as str.

d1_test.test_files.load_xml_to_pyxb(filename)

d1_test.test_files.load_xml_to_str(filename)

d1_test.test_files.load_json(filename)

d1_test.test_files.load_cert(filename)

d1_test.test_files.load_jwt(filename)

d1_test.xml_normalize module

Generate a str that contains a normalized representation of an XML document.

For unit testing, we want to be able to store and compare samples representing XML documents that are guaranteed to
be stable.

Often, XML docs have various sections containing unordered sets of elements where there are no semantics associated
with the order in which they appear in the doc. The same is true for element attributes. For DataONE, typical examples
are lists of subjects, permission rules and services.

Since the source for such elements are often dict and set based containers that themselves don’t provide deterministic
ordering, serializing a group of such objects can generate a large number of possible XML docs that, while semantically
identical, cannot be directly compared as text or in the DOM.

Normalizing the formatting can be done with a single deserialize to DOM and back to XML, but that will not normalize
the ordering of the elements, Without a schema, automated tools cannot rearrange elements in an XML doc, since it
is not known if the order is significant. However, for generating and comparing XML doc samples, a stable document
that contains all the information from the XML doc is sufficient.

The strategy for generating a stable representation of an XML doc is as follows:

• All sibling XML elements must be sorted regardless of where they are in the tree.

• Each element is the root of a branch of the node tree. Sorting, of course, is based on comparing individual
elements in order to determine their relative orderings. If the information in the elements themselves is identical,
it is necessary to break the tie by recursively comparing their descendants until either a difference is found, or
the two elements are determined to be the roots of two identical branches.

• To enable the sort algorithm to compare the branches, sort keys that hold all information in the branch are
generated and passed to the sort. For comparisons to properly compare elements in the most to least significant
order, each node in the branch must be in a single list item. So the key is a nested list of lists.

234 Chapter 4. Contents

DataONE Python Products

• Finally, since the sort keys are generated from the descendants, siblings in a given element can only be sorted
after all their descendants in the tree have been sorted. So the tree must be traversed depth first, and the sort
performed as the algorithm is stepping up from a completed level.

• To avoid having to build a new tree depth first, inline sort is used.

Notes

RDF-XML

Although the hierarchical structure of elements is almost always significant in XML, there are instances where seman-
tically identical XML docs can have different hierarchies. This often occurs when generating RDF-XML docs from
RDF.

This module only normalizes the ordering of sibling elements and attributes. Parent-child relationships are never
changed. So RDF-XML docs generated in such a way that parent-child relationships may differ without change in
semantics are not supported.

Background

RDF is an unordered set of subject-predicate-object triples. Triples cannot share values, so when there are multiple
triples for a subject, each triple must contain a copy of the subject.

RDF-XML supports expressing triples with less redundancy by factoring shared values out to parent elements. E.g., a
set of triples for a subject can be expressed as a series of predicate-object children with a single subject parent.

When generating RDF-XML from RDF that contains many triples that share values, the same set of triples can be
represented by many different hierarchies. The hierarchy that is actually generated depends on the algorithm and may
also depend on the order in which the triples are processed. If the triples are retrieved from an unordered set, the
processing order is pseudo-random, causing pseudo-random variations in the generated hierarchy.

d1_test.xml_normalize.get_normalized_xml_representation(xml)
Return a str that contains a normalized representation of an XML document.

d1_test.xml_normalize.xml_to_stabletree(xml)
Return a StableTree that contains a normalized representation of an XML document.

d1_test.xml_normalize.etree_to_stable_tree(et_node)
Convert an ElementTree to a StableTree.

• Node attributes become @key:string - Text elements become @text:string - name is the name of the xml
element

class d1_test.xml_normalize.StableNode(name, child_node=None)
Bases: object

Tree structure that uses lists instead of dicts, as lists have deterministic ordering.

__init__(name, child_node=None)
child is E or str.

add_child(e)

get_str(s, indent)

get_sort_key_()

sort(p=None)

d1_test.xml_normalize.StableTree
alias of d1_test.xml_normalize.StableNode

4.9. DataONE Test Utilities 235

DataONE Python Products

4.9.3 DataONE Instance Generator for Python

The Instance Generator is used for generating randomized instances of the DataONE types for testing.

It is part of the DataONE Test Utilities for Python and is installed as part of the test utilities.

Contents:

Indices and tables

• genindex

• modindex

• search

4.9.4 DataONE Member Node Stress Tester

The Member Node Stress Tester is a system that generates synthetic queries for Member Nodes. It can perform
load testing on DataONE Member Node APIs such as MNCore.getLogRecords(), MNRead.listObjects() and MNStor-
age.create() and combinations of these.

DataONE Common

DataONE Client

Stress Tester

Instance Generator Test Utilities Multi-Mechanize

Contents:

Configuration

Each test has a configuration file that specifies the Multi-Mechanize parameters, such as how long the test should run
and how many threads to use. The file is called config.cfg and is in the root folder for each test. For instance, the test
for MNStorage.create() has this file in projects/create/config.cfg. See the Multi-Mechanize home page for information
on how to use this file. In the descriptions on how to run the tests, it is assumed that the settings in config.cfg have
already been configured.

Shared settings

To avoid duplication of settings that are likely to be the same for each test, the tests each read some of their configu-
ration from the file stored in ./shared/settings.py. The main setting in this file is the Base URL for the Member Node
which is being tested.

236 Chapter 4. Contents

http://multimechanize.com

DataONE Python Products

Subjects

Certificates

The tests rely on a set of certificates. See Certificates for details.

Certificates

As many of the stress tests excercise Member Node functionality that is not accessible to unauthenticated clients, a set
of test certificates, with which the connections can be established, must be prepared. The certificates must be trusted
by the Member Node being tested and each certificate must contain one or more DataONE subjects that are allowed
to perform the operations on the MN which a given stress test is exercising.

This section describes how to generate and set up the required certificates.

The generated client side certificates are stored in ./generated/certificates/client_side_certs. For each connection, a
given test selects one or more certificates from the client_side_certs folder, depending on which functionality is being
tested.

For instance, the test for MNStorage.create() will establish all its connections with a certificate called sub-
ject_with_create_permissions. The test for MNRead.listObjects() will select random certificates to stress test the
connections with certificates randomly selected from the certificates/create_update_delete folder. If there is only one
certificate in the folder, that certificate will be used for all the connections created by the test.

CA and Member Node setup

A Member Node that runs in the DataONE production environment must trust the CILogon CAs. But, because only
CILogon can sign certificates with that CA, a Member Node is typically set up to trust a locally generated CA for
testing. The DataONE Member Node Stress Tester is based on such a setup. This section outlines generating the local
CA and then describes procedures and requirements for setting up the certificates that are required by each test.

Setting up the local CA

The first step in setting up certificates for testing is to set up a local CA that will be used for signing the test certificates.

Enter the ./generated/certificates folder:

$ cd ./generated/certificates

Create the private key for the local test CA:

$ openssl genrsa -des3 -out local_test_ca.key 1024

For convenience, remove the password from the key:

$ openssl rsa -in local_test_ca.key -out local_test_ca.nopassword.key

Create the local test CA. You will be prompted for the information that OpenSSL will use for generating the DN of the
certificate. The information you enter is not important, but it is recomended to indicate, in one or more of the fields,
that the CA is for testing only. As the DN of the signing CA is included in all signed certificates, it helps with marking
those certificates as being for testing only as well.

$ openssl req -new -x509 -days 3650 -key local_test_ca.nopassword.key -out local_test_
→˓ca.crt

4.9. DataONE Test Utilities 237

DataONE Python Products

Setting up local CA trust

The MN must be set up to trust client side certificates that are signed by the local CA.

The procedure to set up your MN to trust the local CA depends on the software stack on which your MN is based. If
it’s based on Apache, the procedure is likely to be similar to the following:

• Find the location in which Apache is storing CAs for your MN by reading the configuration file for the MN
service, for instance, /etc/apache2/sites-enabled/default-ssl.

• Note the certificate path set in SSLCACertificatePath.

• Move the new local CA, local_test_ca.crt, to the certificate path.

• Enter the certificate path and recreate the certificate hashes with:

$ c_rehash .

Setting up the server side certificate

The MN proves its identity by returning a server side certificate when a client connects.

Enter the ./generated/certificates folder:

$ cd ./generated/certificates

Generate the private key:

$ openssl genrsa -des3 -out local_test_server_cert.key 1024

For convenience, remove the password from the private key:

$ openssl rsa -in local_test_server_cert.key -out local_test_server_cert.nopassword.
→˓key

Create a certificate request. Only the Common Name (CN) field is important for the tester. It must match the name
of your server, as seen from the tester. For instance, if the Base URL for your server is https://my-mn.org/mn, the
Common Name should be my-mn.org. An IP address can also be used.

$ openssl req -new -key local_test_server_cert.nopassword.key -out local_test_server_
→˓cert.csr

Sign the CSR with the CA:

$ openssl x509 -req -days 36500 -in local_test_server_cert.csr -CA local_test_ca.crt -
→˓CAkey local_test_ca.nopassword.key -set_serial 01 -out local_test_server_cert.crt

Setting up the shared key pair

The normal procedure for setting up a new certificate involves creating a private key and a certificate request. The
certificate request is then signed with the private key and sent to the signing entity.

Generating a private key is computationally expensive because it requires gathering entropy. When generating a set of
certificates for testing, it is convenient to generate the private key up front and reuse it for all the generated certificates.

Enter the ./generated/certificates folder:

238 Chapter 4. Contents

DataONE Python Products

$ cd ./generated/certificates

Generate the private key:

$ openssl genrsa -des3 -out local_test_client_cert.key 1024

For convenience, remove the password from the private key:

$ openssl rsa -in local_test_client_cert.key -out local_test_client_cert.nopassword.
→˓key

The private key implicitly contains the public key. The public key is derived from the private key whenever the private
key is passed to a procedure in which the public key is required. For better performance, generate the public key in a
separate step:

$ openssl rsa -in local_test_client_cert.nopassword.key -pubout -out local_test_
→˓client_cert.public.key

Generate list of test subjects

The stress tests randomly pick subjects from a list of subjects. These subjects can be set up automatically with the
generate_subject_list.py script, or the list can be created manually. The advantage of creating this list manually is that
subjects that already known to Member Node can be selected. However, if a completely random list of subjects is
sufficient, simply run the script with the desired number of subjects as the only argument. 100 subjects may be a good
starting point for the tests.

$./generate_subject_list.py 100

Generate certificates

The final step is to generate the certificates. A script, generate_certificates.py, has been provided for this. It uses the
subjects file, certificates and keys that were set up in the earlier sections to create the certificates.

$./generate_certificates.py

Before the certificates can be used by the stress tester, the MN must be set up to allow the subjects to create science
objects.

Tests

Checking the test setup

Before the tests are run via multimech-run, they can be checked by running them directly. When a test script is run
directly, it will execute a single instance of the test and any issues are displayed directly as an exception trace. When
tests are run via multimech-run, exceptions are only counted, not displayed. For example, to execute a single
instance of the MNStorage.create() test, normally started with multimech-run projects/create, run
./projects/create/test_scripts/tier_3_mn_storage_create.py.

4.9. DataONE Test Utilities 239

DataONE Python Products

Checking for valid responses

To keep the load on the computer running the stress tests to a minimum, the tests do not attempt to deserialize the
documents returned by the APIs being tested. Instead, they perform a simple check for the “200 OK” HTTP status
code that the APIs are expected to return together with a valid DataONE data type upon successful completion.

Creating and using test objects

Many of the tests require a set of test objects to be available on the MN being tested and a list of the objects that are
available for tests. The MNStorage.create() stress test has the secondary purpose of creating the test objects.

The tests use either publicly accessible test objects or access controlled objects. Depending on the required type of
object, a test reads a file containing a list of pubclicly accessible objects or a file containing a list of access controlled
objects plus a list of subjects that have access to each object.

Each line in the file used for publicly accessible objects is an object identifier. The default location is ./generated/
public_objects.txt and can be modified in settings.py. The file is UTF-8 encoded.

Each line in the file used for access controlled objects contains object identifier, a tab separator and a subject that has
at least read access to the object. If the object is readable by more than one subject, the object identifier is repeated on
multiple lines, each with a separate subject.

GMN includes a management command to generate these files. Typical usage is:

$./manage.py generate_object_list --public public_objects.txt
$./manage.py generate_object_list private_objects.txt

The location of the file can be configured in settings.py. The default locations are:

./generated/public_objects.txt

./generated/private_objects.txt

General test procedure

The tests all follow the same basic pattern:

• The tests work with two lists of objects, one for public and one for private objects. See Creating and using test
objects for more information on how to set up these lists. Public objects can be read by any subject without
authentication. Private objects are access controlled. They are accessible only to a specific list of one or more
subjects.

• Read the public and private object lists from disk and store them as tables in memory.

• Create a number of threads, as specified in the threads section of the ./projects/<test>/config.
cfg. The number of threads equals the number of concurrent connections that will be made to the MN.

• Each thread repeatedely selects random objects and subjects from the object tables and:

• Create a public or authenticated connection to the MN designated in the BASEURL setting in settings.
py. Public connections are made without a certificate and authenticated connections use one of the generated
certificates.

• Issue the API call to be stress tested to MN.

• Read and discard the entire returned stream.

• Check for a valid status code.

Some tests issue combinations of API calls concurrently.

240 Chapter 4. Contents

DataONE Python Products

MNStorage.create()

Stress testing of the MNStorage.create() API.

This test concurrently creates many small, randomized science objects on the MN. Each science object has System
Metadata with a number of randomly selected parameters.

In addition to stress testing the MNStorage.create() API, this test serves a second purpose, which is to populate
the MN with test objects with a varied set of permissions for use by other stress tests. By default, the generates objects
are small (1024 bytes) to prevent network bandwidth from becoming the limiting factor for performance.

The test generates permissions for randomly selected subjects in the Creating and using test objects.

The test always connects with the subject_with_create_permissions certificate. This means that the
MN must have been set up to allow the DataONE subject, CN=subject_with_create_permissions,
O=d1-stress-tester,C=US,DC=d1-stress-tester,DC=com to create objects.

To run the test:

$ multimech-run projects/create/

MNRead.get()

Stress testing of the MNRead.get() API with public objects.

This test creates concurrent unauthenticated connections to the MN. For each connection, a random public object is
selected and retrieved. The retrieved stream is discarded and the status code is checked.

See the MNRead.get_auth() test for testing with authenticated connections.

To run the test:

$ multimech-run projects/get

MNRead.get_auth()

Stress testing of the MNRead.get() API with authenticated connections and access controlled objects.

This test creates concurrent authenticated connections to the MN. For each connection, a random private object and
subject with read access to the object is selected. A connection is made to the MN using the subject’s certificate and
the private object is retrieved. The retrieved stream id discarded and the status code is checked.

To run the test:

$ multimech-run projects/get_auth/

MNRead.listObjects(), called by Coordinating Node

Stress testing of the MNRead.listObjects() API.

This test concurrently retrieves object lists with with random offset and page size, selected from the full
range of objects. All connections are made with the subject_with_cn_permissions certificate. This
means that the MN must be set up to allow the DataONE subject, CN=subject_with_cn_permissions,
O=d1-stress-tester,C=US,DC=d1-stress-tester,DC=com to act as a Coordinating Node.

To run the test:

4.9. DataONE Test Utilities 241

DataONE Python Products

$ multimech-run projects/list_objects/

MNRead.getLogRecords() called by client

Stress testing of the MNRead.getLogRecords() API as used for getting the log records for a single private object
by a client with regular permissions.

When called by a regular authenticted client, individual access control is applied to each object.

The test selects a random private object. It then creates an authenticated connection using the certificate for one of the
subjects which have read access to the object.

To run the test:

$ multimech-run projects/get_log_records_client/

MNRead.getLogRecords() called by Coordinating Node

Stress testing of the MNRead.getLogRecords() API as used by Coordinating Nodes to retrieve a large number
of log records created within a given time period.

When a client successfully authenticates as a Coordinating Node, individual access control is not applied to objects.

The test selects a random private object. It then creates a connection and authenticates as a CN. It then retrieves all log
records created within a given, random, date range.

To run the test:

$ multimech-run projects/get_log_records_client/

Combination 1

Stress testing using a of a combination of the MNRead.get(), MNRead.listObjects() and MNStorage.create() tests
described above.

Before running this test, the MN must be populated with test objects, for instance by running the test for MNStor-
age.create(). The objects that are created during this test do not themselves become available for testing until the list
of public and private objects is updated as described in Creating and using test objects.

The individual stress tests use configuration values from the config.cfg file in the combination project directory,
not the values in the config.cfg files in their own project directories.

Combination 2

Stress testing using a combination of MNRead.get() and MNRead.getLogRecords().

Otherwise, like Combination 1.

Indices and tables

• genindex

• modindex

242 Chapter 4. Contents

DataONE Python Products

• search

4.9.5 DataONE Test Utilities

See DataONE Python Products for an overview of the DataONE libraries and other products implemented in Python.

4.9.6 Indices and tables

• genindex

• modindex

• search

4.9. DataONE Test Utilities 243

DataONE Python Products

244 Chapter 4. Contents

PYTHON MODULE INDEX

d
d1_client, 188
d1_client.baseclient, 194
d1_client.baseclient_1_1, 197
d1_client.baseclient_1_2, 199
d1_client.baseclient_2_0, 199
d1_client.cnclient, 199
d1_client.cnclient_1_1, 212
d1_client.cnclient_1_2, 213
d1_client.cnclient_2_0, 213
d1_client.d1client, 214
d1_client.iter, 188
d1_client.iter.logrecord, 189
d1_client.iter.logrecord_multi, 190
d1_client.iter.node, 191
d1_client.iter.objectlist, 191
d1_client.iter.objectlist_multi, 193
d1_client.iter.sysmeta_multi, 193
d1_client.mnclient, 214
d1_client.mnclient_1_1, 215
d1_client.mnclient_1_2, 215
d1_client.mnclient_2_0, 216
d1_client.session, 216
d1_client.solr_client, 218
d1_client.util, 221
d1_common, 112
d1_common.bagit, 149
d1_common.cert, 112
d1_common.cert.jwt, 112
d1_common.cert.subject_info, 115
d1_common.cert.subjects, 121
d1_common.cert.x509, 121
d1_common.checksum, 150
d1_common.const, 152
d1_common.date_time, 152
d1_common.env, 158
d1_common.ext, 125
d1_common.ext.mimeparser, 125
d1_common.iter, 126
d1_common.iter.bytes, 126
d1_common.iter.file, 127
d1_common.iter.path, 127

d1_common.iter.string, 129
d1_common.logging_context, 159
d1_common.multipart, 159
d1_common.node, 160
d1_common.replication_policy, 160
d1_common.resource_map, 164
d1_common.revision, 169
d1_common.system_metadata, 170
d1_common.type_conversions, 173
d1_common.types, 129
d1_common.types.dataoneErrors, 130
d1_common.types.dataoneTypes, 130
d1_common.types.dataoneTypes_v1, 130
d1_common.types.dataoneTypes_v1_1, 130
d1_common.types.dataoneTypes_v1_2, 130
d1_common.types.dataoneTypes_v2_0, 130
d1_common.types.exceptions, 130
d1_common.url, 178
d1_common.util, 179
d1_common.utils, 135
d1_common.utils.filesystem, 135
d1_common.utils.progress_logger, 136
d1_common.wrap, 138
d1_common.wrap.access_policy, 138
d1_common.wrap.simple_xml, 145
d1_common.xml, 183
d1_test, 221
d1_test.instance_generator, 222
d1_test.instance_generator.checksum, 222
d1_test.instance_generator.format_id,

222
d1_test.instance_generator.identifier,

222
d1_test.instance_generator.media_type,

223
d1_test.instance_generator.names, 223
d1_test.instance_generator.node_ref, 223
d1_test.instance_generator.person, 223
d1_test.instance_generator.random_data,

223
d1_test.instance_generator.replication_policy,

225

245

DataONE Python Products

d1_test.instance_generator.replication_status,
225

d1_test.instance_generator.subject, 225
d1_test.instance_generator.unicode_names,

226
d1_test.instance_generator.unicode_test_strings,

226
d1_test.instance_generator.user_agent,

226
d1_test.instance_generator.words, 226
d1_test.mock_api, 226
d1_test.mock_api.create, 226
d1_test.mock_api.d1_exception, 227
d1_test.mock_api.django_client, 227
d1_test.mock_api.generate_identifier,

227
d1_test.mock_api.ping, 228
d1_test.mock_api.post, 228
d1_test.replication_tester, 229
d1_test.replication_tester.replication_error,

229
d1_test.replication_tester.replication_server,

229
d1_test.replication_tester.replication_tester,

229
d1_test.replication_tester.test_object_generator,

230
d1_test.slender_node_test_client, 233
d1_test.test_files, 234
d1_test.utilities, 230
d1_test.utilities.create_from_file, 230
d1_test.utilities.generate_test_subject_certs,

230
d1_test.utilities.my_subject, 232
d1_test.utilities.pem_in_http_header,

232
d1_test.utilities.populate_mn, 232
d1_test.utilities.test_object_generator,

232
d1_test.utilities.urlencode, 233
d1_test.xml_normalize, 234

246 Python Module Index

INDEX

Symbols
__init__() (d1_client.baseclient.DataONEBaseClient

method), 196
__init__() (d1_client.baseclient_1_1.DataONEBaseClient_1_1

method), 198
__init__() (d1_client.baseclient_1_2.DataONEBaseClient_1_2

method), 199
__init__() (d1_client.baseclient_2_0.DataONEBaseClient_2_0

method), 199
__init__() (d1_client.cnclient.CoordinatingNodeClient

method), 200
__init__() (d1_client.cnclient_1_1.CoordinatingNodeClient_1_1

method), 212
__init__() (d1_client.cnclient_1_2.CoordinatingNodeClient_1_2

method), 213
__init__() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0

method), 213
__init__() (d1_client.iter.logrecord.LogRecordIterator

method), 189
__init__() (d1_client.iter.objectlist.ObjectListIterator

method), 192
__init__() (d1_client.mnclient.MemberNodeClient

method), 214
__init__() (d1_client.mnclient_1_1.MemberNodeClient_1_1

method), 215
__init__() (d1_client.mnclient_1_2.MemberNodeClient_1_2

method), 215
__init__() (d1_client.mnclient_2_0.MemberNodeClient_2_0

method), 216
__init__() (d1_client.session.Session method), 216
__init__() (d1_client.solr_client.SolrValuesResponseIterator

method), 220
__init__() (d1_common.date_time.FixedOffset

method), 153
__init__() (d1_common.logging_context.LoggingContext

method), 159
__init__() (d1_common.resource_map.ResourceMap

method), 165
__init__() (d1_common.types.exceptions.DataONEException

method), 132
__init__() (d1_common.utils.progress_logger.ProgressLogger

method), 137

__init__() (d1_test.slender_node_test_client.SlenderNodeTestClient
method), 233

__init__() (d1_test.xml_normalize.StableNode
method), 235

A
abs_path() (in module d1_common.utils.filesystem),

136
abs_path_from_base() (in module

d1_common.utils.filesystem), 136
AccessPolicyWrapper (class in

d1_common.wrap.access_policy), 141
add() (d1_client.solr_client.SolrClient method), 219
add_authenticated_read()

(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

add_authenticated_read() (in module
d1_common.wrap.access_policy), 144

add_blocked() (in module
d1_common.replication_policy), 163

add_callback() (in module
d1_test.mock_api.create), 226

add_callback() (in module
d1_test.mock_api.django_client), 227

add_callback() (in module
d1_test.mock_api.generate_identifier), 228

add_callback() (in module d1_test.mock_api.ping),
228

add_callback() (in module d1_test.mock_api.post),
228

add_child() (d1_common.cert.subject_info.SubjectInfoNode
method), 119

add_child() (d1_test.xml_normalize.StableNode
method), 235

add_docs() (d1_client.solr_client.SolrClient method),
219

add_perm() (d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

add_perm() (in module
d1_common.wrap.access_policy), 144

add_preferred() (in module
d1_common.replication_policy), 163

247

DataONE Python Products

add_public_read()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

add_public_read() (in module
d1_common.wrap.access_policy), 144

add_verified_read()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

add_verified_read() (in module
d1_common.wrap.access_policy), 144

addDataDocuments()
(d1_common.resource_map.ResourceMap
method), 167

addMetadataDocument()
(d1_common.resource_map.ResourceMap
method), 167

addResource() (d1_common.resource_map.ResourceMap
method), 166

Apache, 35
api_version_tup (d1_client.baseclient.DataONEBaseClient

attribute), 196
archive() (d1_client.baseclient.DataONEBaseClient

method), 197
archiveResponse()

(d1_client.baseclient.DataONEBaseClient
method), 197

are_checksums_equal() (in module
d1_common.checksum), 151

are_equal() (in module d1_common.date_time), 154
are_equal_elements() (in module

d1_common.xml), 185
are_equal_or_superset() (in module

d1_common.xml), 184
are_equal_pyxb() (in module d1_common.xml),

185
are_equal_xml() (in module d1_common.xml), 184
are_equivalent() (in module d1_common.xml),

184
are_equivalent_pyxb()

(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

are_equivalent_pyxb() (in module
d1_common.replication_policy), 162

are_equivalent_pyxb() (in module
d1_common.system_metadata), 172

are_equivalent_pyxb() (in module
d1_common.wrap.access_policy), 144

are_equivalent_pyxb() (in module
d1_common.xml), 184

are_equivalent_xml()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

are_equivalent_xml() (in module
d1_common.replication_policy), 162

are_equivalent_xml() (in module
d1_common.system_metadata), 172

are_equivalent_xml() (in module
d1_common.wrap.access_policy), 144

asGraphvizDot() (d1_common.resource_map.ResourceMap
method), 169

AuthenticationTimeout, 133

B
base_url (d1_client.session.Session attribute), 217
Bash, 35
best_match() (in module

d1_common.ext.mimeparser), 126
BytesIterator (class in d1_common.iter.bytes), 126

C
CA, 33
CA certificate, 33
CA signing key, 33
calculate_checksum_on_bytes() (in module

d1_common.checksum), 151
calculate_checksum_on_iterator() (in mod-

ule d1_common.checksum), 151
calculate_checksum_on_stream() (in module

d1_common.checksum), 150
cast_naive_datetime_to_tz() (in module

d1_common.date_time), 157
Certificate, 33
Chain of trust, 34
CILogon, 36
clear() (d1_common.wrap.access_policy.AccessPolicyWrapper

method), 143
clear() (in module d1_common.wrap.access_policy),

144
clear_elements() (in module

d1_common.system_metadata), 172
client, 33
Client side authentication, 34
Client side certificate, 34
CN, 33
commit() (d1_client.solr_client.SolrClient method),

219
CompareError, 187
completed() (d1_common.utils.progress_logger.ProgressLogger

method), 138
confirmMapIdentity()

(d1_client.cnclient.CoordinatingNodeClient
method), 208

confirmMapIdentityResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 208

CoordinatingNodeClient (class in
d1_client.cnclient), 199

248 Index

DataONE Python Products

CoordinatingNodeClient_1_1 (class in
d1_client.cnclient_1_1), 212

CoordinatingNodeClient_1_2 (class in
d1_client.cnclient_1_2), 213

CoordinatingNodeClient_2_0 (class in
d1_client.cnclient_2_0), 213

count() (d1_client.solr_client.SolrClient method), 219
count() (d1_common.util.EventCounter method), 180
create() (d1_client.mnclient.MemberNodeClient

method), 215
create() (d1_test.slender_node_test_client.SlenderNodeTestClient

method), 233
create_bagit_stream() (in module

d1_common.bagit), 149
create_cert_request() (in module

d1_test.utilities.generate_test_subject_certs),
231

create_certificate() (in module
d1_test.utilities.generate_test_subject_certs),
231

create_checksum_object_from_bytes() (in
module d1_common.checksum), 150

create_checksum_object_from_iterator()
(in module d1_common.checksum), 150

create_checksum_object_from_stream() (in
module d1_common.checksum), 150

create_exception_by_error_code() (in mod-
ule d1_common.types.exceptions), 131

create_exception_by_name() (in module
d1_common.types.exceptions), 131

create_header_d1_exception() (in module
d1_test.mock_api.d1_exception), 227

create_key_pair() (in module
d1_test.utilities.generate_test_subject_certs),
230

create_missing_directories_for_dir() (in
module d1_common.utils.filesystem), 136

create_missing_directories_for_file()
(in module d1_common.utils.filesystem), 135

create_regular_d1_exception() (in module
d1_test.mock_api.d1_exception), 227

create_session_extension() (in module
d1_test.utilities.generate_test_subject_certs),
231

create_test_object_on_mn() (in module
d1_test.replication_tester.replication_tester),
229

create_utc_datetime() (in module
d1_common.date_time), 158

createGroup() (d1_client.cnclient.CoordinatingNodeClient
method), 209

createGroupResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 208

createResourceMapFromStream() (in module
d1_common.resource_map), 164

createResponse() (d1_client.mnclient.MemberNodeClient
method), 215

createSimpleResourceMap() (in module
d1_common.resource_map), 164

cron, 36
CSR, 33

D
d1_client (module), 188
d1_client.baseclient (module), 194
d1_client.baseclient_1_1 (module), 197
d1_client.baseclient_1_2 (module), 199
d1_client.baseclient_2_0 (module), 199
d1_client.cnclient (module), 199
d1_client.cnclient_1_1 (module), 212
d1_client.cnclient_1_2 (module), 213
d1_client.cnclient_2_0 (module), 213
d1_client.d1client (module), 214
d1_client.iter (module), 188
d1_client.iter.logrecord (module), 189
d1_client.iter.logrecord_multi (module),

190
d1_client.iter.node (module), 191
d1_client.iter.objectlist (module), 191
d1_client.iter.objectlist_multi (module),

193
d1_client.iter.sysmeta_multi (module), 193
d1_client.mnclient (module), 214
d1_client.mnclient_1_1 (module), 215
d1_client.mnclient_1_2 (module), 215
d1_client.mnclient_2_0 (module), 216
d1_client.session (module), 216
d1_client.solr_client (module), 218
d1_client.util (module), 221
d1_common (module), 112
d1_common.bagit (module), 149
d1_common.cert (module), 112
d1_common.cert.jwt (module), 112
d1_common.cert.subject_info (module), 115
d1_common.cert.subjects (module), 121
d1_common.cert.x509 (module), 121
d1_common.checksum (module), 150
d1_common.const (module), 152
d1_common.date_time (module), 152
d1_common.env (module), 158
d1_common.ext (module), 125
d1_common.ext.mimeparser (module), 125
d1_common.iter (module), 126
d1_common.iter.bytes (module), 126
d1_common.iter.file (module), 127
d1_common.iter.path (module), 127
d1_common.iter.string (module), 129

Index 249

DataONE Python Products

d1_common.logging_context (module), 159
d1_common.multipart (module), 159
d1_common.node (module), 160
d1_common.replication_policy (module), 160
d1_common.resource_map (module), 164
d1_common.revision (module), 169
d1_common.system_metadata (module), 170
d1_common.type_conversions (module), 173
d1_common.types (module), 129
d1_common.types.dataoneErrors (module),

130
d1_common.types.dataoneTypes (module), 130
d1_common.types.dataoneTypes_v1 (module),

130
d1_common.types.dataoneTypes_v1_1 (mod-

ule), 130
d1_common.types.dataoneTypes_v1_2 (mod-

ule), 130
d1_common.types.dataoneTypes_v2_0 (mod-

ule), 130
d1_common.types.exceptions (module), 130
d1_common.url (module), 178
d1_common.util (module), 179
d1_common.utils (module), 135
d1_common.utils.filesystem (module), 135
d1_common.utils.progress_logger (module),

136
d1_common.wrap (module), 138
d1_common.wrap.access_policy (module), 138
d1_common.wrap.simple_xml (module), 145
d1_common.xml (module), 183
d1_test (module), 221
d1_test.instance_generator (module), 222
d1_test.instance_generator.checksum

(module), 222
d1_test.instance_generator.format_id

(module), 222
d1_test.instance_generator.identifier

(module), 222
d1_test.instance_generator.media_type

(module), 223
d1_test.instance_generator.names (mod-

ule), 223
d1_test.instance_generator.node_ref

(module), 223
d1_test.instance_generator.person (mod-

ule), 223
d1_test.instance_generator.random_data

(module), 223
d1_test.instance_generator.replication_policy

(module), 225
d1_test.instance_generator.replication_status

(module), 225

d1_test.instance_generator.subject (mod-
ule), 225

d1_test.instance_generator.unicode_names
(module), 226

d1_test.instance_generator.unicode_test_strings
(module), 226

d1_test.instance_generator.user_agent
(module), 226

d1_test.instance_generator.words (mod-
ule), 226

d1_test.mock_api (module), 226
d1_test.mock_api.create (module), 226
d1_test.mock_api.d1_exception (module),

227
d1_test.mock_api.django_client (module),

227
d1_test.mock_api.generate_identifier

(module), 227
d1_test.mock_api.ping (module), 228
d1_test.mock_api.post (module), 228
d1_test.replication_tester (module), 229
d1_test.replication_tester.replication_error

(module), 229
d1_test.replication_tester.replication_server

(module), 229
d1_test.replication_tester.replication_tester

(module), 229
d1_test.replication_tester.test_object_generator

(module), 230
d1_test.slender_node_test_client (mod-

ule), 233
d1_test.test_files (module), 234
d1_test.utilities (module), 230
d1_test.utilities.create_from_file (mod-

ule), 230
d1_test.utilities.generate_test_subject_certs

(module), 230
d1_test.utilities.my_subject (module), 232
d1_test.utilities.pem_in_http_header

(module), 232
d1_test.utilities.populate_mn (module),

232
d1_test.utilities.test_object_generator

(module), 232
d1_test.utilities.urlencode (module), 233
d1_test.xml_normalize (module), 234
DataONE, 32
DataONE Client Library for Python, 32
DataONE Common Library for Python, 32
DataONE Test Utilities for Python, 32
DataONEBaseClient (class in d1_client.baseclient),

194
DataONEBaseClient_1_1 (class in

d1_client.baseclient_1_1), 197

250 Index

DataONE Python Products

DataONEBaseClient_1_2 (class in
d1_client.baseclient_1_2), 199

DataONEBaseClient_2_0 (class in
d1_client.baseclient_2_0), 199

DataONEClient (class in d1_client.d1client), 214
DataONEException, 132
date_utc_now_iso() (in module

d1_common.date_time), 157
decode_bu64() (in module d1_common.cert.jwt), 115
decode_der() (in module d1_common.cert.x509),

123
decodePathElement() (in module d1_common.url),

178
decodeQueryElement() (in module

d1_common.url), 179
default() (d1_common.util.ToJsonCompatibleTypes

method), 182
delete() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0

method), 213
delete() (d1_client.mnclient.MemberNodeClient

method), 215
DELETE() (d1_client.session.Session method), 217
delete() (d1_client.solr_client.SolrClient method),

219
delete_by_query()

(d1_client.solr_client.SolrClient method),
219

deleteReplicationMetadata()
(d1_client.cnclient.CoordinatingNodeClient
method), 211

deleteReplicationMetadataResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 211

deleteResponse() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 213

deleteResponse() (d1_client.mnclient.MemberNodeClient
method), 215

denyMapIdentity()
(d1_client.cnclient.CoordinatingNodeClient
method), 208

denyMapIdentityResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 207

describe() (d1_client.baseclient.DataONEBaseClient
method), 197

describeResponse()
(d1_client.baseclient.DataONEBaseClient
method), 197

deserialize() (d1_common.resource_map.ResourceMap
method), 166

deserialize() (in module
d1_common.types.exceptions), 131

deserialize() (in module d1_common.xml), 183
deserialize_d1_exception() (in module

d1_common.xml), 183
deserialize_from_headers() (in module

d1_common.types.exceptions), 131
deserialize_pem() (in module

d1_common.cert.x509), 122
deserialize_pem_file() (in module

d1_common.cert.x509), 122
deserialize_subject_info() (in module

d1_common.cert.subject_info), 119
dict_to_pyxb() (in module

d1_common.replication_policy), 163
disable_cert_validation() (in module

d1_common.cert.x509), 123
Django, 35
DN, 34
do_GET() (d1_test.replication_tester.replication_server.Handler

method), 229
do_PUT() (d1_test.replication_tester.replication_server.Handler

method), 229
Dokan, 34
download_as_der() (in module

d1_common.cert.x509), 122
download_as_obj() (in module

d1_common.cert.x509), 123
download_as_pem() (in module

d1_common.cert.x509), 123
dst() (d1_common.date_time.FixedOffset method), 153
dst() (d1_common.date_time.UTC method), 153
dt_from_http_datetime_str() (in module

d1_common.date_time), 156
dt_from_iso8601_str() (in module

d1_common.date_time), 156
dt_from_ts() (in module d1_common.date_time),

155
dump() (d1_common.wrap.access_policy.AccessPolicyWrapper

method), 142
dump() (in module d1_common.wrap.access_policy),

144
dump_request_and_response()

(d1_client.session.Session method), 218
dump_to_log() (d1_common.util.EventCounter

method), 181
dumpExtensions() (in module

d1_test.utilities.my_subject), 232

E
echoCredentials()

(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

echoCredentialsResponse()
(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

echoIndexedObject()
(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0

Index 251

DataONE Python Products

method), 214
echoIndexedObjectResponse()

(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

echoSystemMetadata()
(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

echoSystemMetadataResponse()
(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

encode() (d1_common.types.exceptions.DataONEException
method), 132

encode_bu64() (in module d1_common.cert.jwt), 115
encodeAndJoinPathElements() (in module

d1_common.url), 179
encodePathElement() (in module d1_common.url),

178
encodeQueryElement() (in module

d1_common.url), 179
end_task_type() (d1_common.utils.progress_logger.ProgressLogger

method), 138
etree_replace_namespace() (in module

d1_common.type_conversions), 177
etree_to_pyxb() (in module

d1_common.type_conversions), 177
etree_to_stable_tree() (in module

d1_test.xml_normalize), 235
etree_to_str() (in module

d1_common.type_conversions), 177
event() (d1_common.utils.progress_logger.ProgressLogger

method), 138
event_dict (d1_common.util.EventCounter at-

tribute), 180
EventCounter (class in d1_common.util), 180
extract_issuer_ca_cert_url() (in module

d1_common.cert.x509), 123
extract_subject_from_dn() (in module

d1_common.cert.x509), 121
extract_subject_info_extension() (in mod-

ule d1_common.cert.x509), 122
extract_subjects() (in module

d1_common.cert.subject_info), 117
extract_subjects() (in module

d1_common.cert.subjects), 121
extract_subjects() (in module

d1_common.cert.x509), 121
extract_version_tag_from_url() (in module

d1_common.type_conversions), 173

F
field_alpha_histogram()

(d1_client.solr_client.SolrClient method),
219

FileIterator (class in d1_common.iter.file), 127

FileLikeObjectIterator (class in
d1_common.iter.file), 127

find_url_mismatches() (in module
d1_common.url), 179

fitness_and_quality_parsed() (in module
d1_common.ext.mimeparser), 126

FixedOffset (class in d1_common.date_time), 153
format_checksum() (in module

d1_common.checksum), 152
format_diff_pyxb() (in module d1_common.xml),

185
format_diff_xml() (in module d1_common.xml),

185
format_json_to_normalized_pretty_json()

(in module d1_common.util), 181
format_sec_to_dhm() (in module

d1_common.util), 182
friendly_format()

(d1_common.types.exceptions.DataONEException
method), 132

FUSE, 34
fusepy, 34

G
gen_safe_path() (in module

d1_common.utils.filesystem), 135
gen_safe_path_element() (in module

d1_common.utils.filesystem), 135
gen_subject_info_tree() (in module

d1_common.cert.subject_info), 119
gen_sysmeta() (in module

d1_test.utilities.create_from_file), 230
Generate (class in d1_test.instance_generator.format_id),

222
Generate (class in d1_test.instance_generator.user_agent),

226
generate() (in module

d1_test.instance_generator.checksum), 222
generate() (in module

d1_test.instance_generator.identifier), 222
generate() (in module

d1_test.instance_generator.media_type),
223

generate() (in module
d1_test.instance_generator.node_ref), 223

generate() (in module
d1_test.instance_generator.person), 223

generate() (in module
d1_test.instance_generator.replication_policy),
225

generate() (in module
d1_test.instance_generator.replication_status),
225

252 Index

DataONE Python Products

generate() (in module
d1_test.instance_generator.subject), 225

generate_bare() (in module
d1_test.instance_generator.identifier), 222

generate_bare() (in module
d1_test.instance_generator.node_ref), 223

generate_bare() (in module
d1_test.instance_generator.subject), 225

generate_pid() (in module
d1_test.instance_generator.identifier), 222

generate_random_ascii() (in module
d1_test.replication_tester.test_object_generator),
230

generate_random_ascii() (in module
d1_test.utilities.test_object_generator), 232

generate_science_object_with_sysmeta()
(in module d1_test.replication_tester.test_object_generator),
230

generate_science_object_with_sysmeta()
(in module d1_test.utilities.test_object_generator),
232

generate_sid() (in module
d1_test.instance_generator.identifier), 222

generateIdentifier()
(d1_client.baseclient.DataONEBaseClient
method), 197

generateIdentifierResponse()
(d1_client.baseclient.DataONEBaseClient
method), 197

get() (d1_client.baseclient.DataONEBaseClient
method), 196

GET() (d1_client.session.Session method), 217
get() (d1_client.solr_client.SolrClient method), 219
get() (d1_test.slender_node_test_client.SlenderNodeTestClient

method), 234
get_abs_test_file_path() (in module

d1_test.test_files), 234
get_and_save() (d1_client.baseclient.DataONEBaseClient

method), 197
get_api_major_by_base_url() (in module

d1_client.d1client), 214
get_attr_value() (d1_common.wrap.simple_xml.SimpleXMLWrapper

method), 147
get_auto() (in module d1_common.xml), 186
get_bu64_tup() (in module d1_common.cert.jwt),

113
get_checksum_calculator_by_dataone_designator()

(in module d1_common.checksum), 151
get_client_class_by_version_tag() (in

module d1_client.d1client), 214
get_client_type() (in module d1_client.d1client),

214
get_content_type() (in module d1_common.util),

180

get_curl_command_line()
(d1_client.session.Session method), 218

get_d1_env() (in module d1_common.env), 158
get_d1_env_by_base_url() (in module

d1_common.env), 159
get_d1_env_keys() (in module d1_common.env),

158
get_default_checksum_algorithm() (in mod-

ule d1_common.checksum), 152
get_effective_perm_list()

(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

get_effective_perm_list() (in module
d1_common.wrap.access_policy), 144

get_element_by_attr_key()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 147

get_element_by_name()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 146

get_element_by_xpath()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 146

get_element_dt() (d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 148

get_element_list_by_attr_key()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 146

get_element_list_by_name()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 146

get_element_text()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 147

get_element_text_by_attr_key()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 147

get_ext_val_str() (in module
d1_common.cert.x509), 124

get_extension_by_name() (in module
d1_common.cert.x509), 124

get_field_min_max()
(d1_client.solr_client.SolrClient method),
219

get_field_values()
(d1_client.solr_client.SolrClient method),
219

get_highest_perm_str()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

get_highest_perm_str() (in module
d1_common.wrap.access_policy), 144

get_identifiers() (in module
d1_common.revision), 169

Index 253

DataONE Python Products

get_ids() (d1_client.solr_client.SolrClient method),
219

get_jwt_bu64() (in module d1_common.cert.jwt),
113

get_jwt_dict() (in module d1_common.cert.jwt),
114

get_jwt_tup() (in module d1_common.cert.jwt), 113
get_label_set() (d1_common.cert.subject_info.SubjectInfoNode

method), 120
get_leaf_node_path_list()

(d1_common.cert.subject_info.SubjectInfoNode
method), 120

get_normalized_perm_list()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

get_normalized_perm_list() (in module
d1_common.wrap.access_policy), 144

get_normalized_pyxb()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

get_normalized_pyxb() (in module
d1_common.wrap.access_policy), 144

get_normalized_xml_representation() (in
module d1_test.xml_normalize), 235

get_opt_attr() (in module d1_common.xml), 186
get_opt_val() (in module d1_common.xml), 186
get_path_list() (d1_common.cert.subject_info.SubjectInfoNode

method), 120
get_path_str() (d1_common.cert.subject_info.SubjectInfoNode

method), 120
get_pids_in_revision_chain() (in module

d1_common.revision), 169
get_pretty_xml() (d1_common.wrap.simple_xml.SimpleXMLWrapper

method), 146
get_public_key_pem() (in module

d1_common.cert.x509), 125
get_pyxb() (d1_common.types.exceptions.DataONEException

method), 132
get_pyxb_binding_by_api_version() (in

module d1_common.type_conversions), 173
get_pyxb_namespaces() (in module

d1_common.type_conversions), 174
get_req_val() (in module d1_common.xml), 187
get_sort_key_() (d1_test.xml_normalize.StableNode

method), 235
get_str() (d1_test.xml_normalize.StableNode

method), 235
get_subject_set()

(d1_common.cert.subject_info.SubjectInfoNode
method), 121

get_subject_with_file_validation() (in
module d1_common.cert.jwt), 113

get_subject_with_local_validation() (in
module d1_common.cert.jwt), 112

get_subject_with_remote_validation() (in
module d1_common.cert.jwt), 113

get_subject_without_validation() (in mod-
ule d1_common.cert.jwt), 113

get_subjects_with_equal_or_higher_perm()
(d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

get_subjects_with_equal_or_higher_perm()
(in module d1_common.wrap.access_policy),
144

get_supported_algorithms() (in module
d1_common.checksum), 152

get_val_list() (in module d1_common.cert.x509),
124

get_val_str() (in module d1_common.cert.x509),
124

get_version_tag() (in module
d1_common.type_conversions), 173

get_version_tag_by_d1_client() (in module
d1_client.d1client), 214

get_version_tag_by_pyxb_binding() (in
module d1_common.type_conversions), 173

get_xml() (d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 146

get_xml_below_element()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 146

getAggregatedPids()
(d1_common.resource_map.ResourceMap
method), 168

getAggregatedScienceDataPids()
(d1_common.resource_map.ResourceMap
method), 168

getAggregatedScienceMetadataPids()
(d1_common.resource_map.ResourceMap
method), 168

getAggregation() (d1_common.resource_map.ResourceMap
method), 166

getAllPredicates()
(d1_common.resource_map.ResourceMap
method), 167

getAllTriples() (d1_common.resource_map.ResourceMap
method), 167

getCapabilities()
(d1_client.mnclient.MemberNodeClient
method), 214

getCapabilitiesResponse()
(d1_client.mnclient.MemberNodeClient
method), 214

getChecksum() (d1_client.cnclient.CoordinatingNodeClient
method), 203

getChecksum() (d1_client.mnclient.MemberNodeClient
method), 214

getChecksumResponse()

254 Index

DataONE Python Products

(d1_client.cnclient.CoordinatingNodeClient
method), 202

getChecksumResponse()
(d1_client.mnclient.MemberNodeClient
method), 214

getFormat() (d1_client.cnclient.CoordinatingNodeClient
method), 200

getFormatResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 200

getLogRecords() (d1_client.baseclient.DataONEBaseClient
method), 196

getLogRecordsResponse()
(d1_client.baseclient.DataONEBaseClient
method), 196

getObjectByPid() (d1_common.resource_map.ResourceMap
method), 166

getPackage() (d1_client.mnclient_1_2.MemberNodeClient_1_2
method), 216

getPackageResponse()
(d1_client.mnclient_1_2.MemberNodeClient_1_2
method), 216

getQueryEngineDescription()
(d1_client.baseclient_1_1.DataONEBaseClient_1_1
method), 198

getQueryEngineDescription()
(d1_client.cnclient.CoordinatingNodeClient
method), 204

getQueryEngineDescriptionResponse()
(d1_client.baseclient_1_1.DataONEBaseClient_1_1
method), 198

getQueryEngineDescriptionResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 204

getReplica() (d1_client.mnclient.MemberNodeClient
method), 215

getReplicaResponse()
(d1_client.mnclient.MemberNodeClient
method), 215

getResourceMapPid()
(d1_common.resource_map.ResourceMap
method), 167

getResponse() (d1_client.baseclient.DataONEBaseClient
method), 196

getSubjectFromCertFile() (in module
d1_test.utilities.my_subject), 232

getSubjectFromName() (in module
d1_test.utilities.my_subject), 232

getSubjectInfo() (d1_client.cnclient.CoordinatingNodeClient
method), 206

getSubjectInfoFromCert() (in module
d1_test.utilities.my_subject), 232

getSubjectInfoResponse()
(d1_client.cnclient.CoordinatingNodeClient

method), 206
getSubjectObjectsByPredicate()

(d1_common.resource_map.ResourceMap
method), 168

getSystemMetadata()
(d1_client.baseclient.DataONEBaseClient
method), 197

getSystemMetadata()
(d1_test.slender_node_test_client.SlenderNodeTestClient
method), 234

getSystemMetadataResponse()
(d1_client.baseclient.DataONEBaseClient
method), 197

GMN, 32

H
Handler (class in d1_test.replication_tester.replication_server),

229
has_replication_policy() (in module

d1_common.replication_policy), 161
has_tz() (in module d1_common.date_time), 154
hasReservation() (d1_client.cnclient.CoordinatingNodeClient

method), 202
hasReservationResponse()

(d1_client.cnclient.CoordinatingNodeClient
method), 202

HEAD() (d1_client.session.Session method), 217
http_datetime_str_from_dt() (in module

d1_common.date_time), 155

I
IdentifierNotUnique, 133
Identity Provider, 34
initialize() (d1_common.resource_map.ResourceMap

method), 165
InsufficientResources, 133
InvalidCredentials, 133
InvalidRequest, 133
InvalidSystemMetadata, 133
InvalidToken, 134
Investigator Toolkit (ITK), 32
is_blocked() (in module

d1_common.replication_policy), 162
is_empty() (d1_common.wrap.access_policy.AccessPolicyWrapper

method), 142
is_empty() (in module

d1_common.wrap.access_policy), 144
is_leaf (d1_common.cert.subject_info.SubjectInfoNode

attribute), 120
is_multipart() (in module d1_common.multipart),

160
is_preferred() (in module

d1_common.replication_policy), 162

Index 255

DataONE Python Products

is_private() (d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

is_private() (in module
d1_common.wrap.access_policy), 144

is_public() (d1_common.wrap.access_policy.AccessPolicyWrapper
method), 142

is_public() (in module
d1_common.wrap.access_policy), 144

is_pyxb() (in module d1_common.type_conversions),
175

is_pyxb_d1_type() (in module
d1_common.type_conversions), 175

is_pyxb_d1_type_name() (in module
d1_common.type_conversions), 175

is_supported_algorithm() (in module
d1_common.checksum), 152

is_sysmeta_pyxb() (in module
d1_common.system_metadata), 171

is_urls_equivalent() (in module
d1_common.url), 179

is_utc() (in module d1_common.date_time), 154
is_valid_iso8601() (in module

d1_common.date_time), 153
is_valid_utf8() (in module d1_common.xml), 186
isAuthorized() (d1_client.baseclient.DataONEBaseClient

method), 197
isAuthorizedResponse()

(d1_client.baseclient.DataONEBaseClient
method), 197

isHttpOrHttps() (in module d1_common.url), 178
isNodeAuthorized()

(d1_client.cnclient.CoordinatingNodeClient
method), 211

isNodeAuthorizedResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 211

ISO8601, 36

J
joinPathElements() (in module d1_common.url),

179
JwtException, 115

L
leaf_node_gen (d1_common.cert.subject_info.SubjectInfoNode

attribute), 120
listChecksumAlgorithms()

(d1_client.cnclient.CoordinatingNodeClient
method), 201

listChecksumAlgorithmsResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 201

listFormats() (d1_client.cnclient.CoordinatingNodeClient
method), 200

listFormatsResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 200

listNodes() (d1_client.cnclient.CoordinatingNodeClient
method), 201

listNodesResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 201

listObjects() (d1_client.baseclient.DataONEBaseClient
method), 197

listObjectsResponse()
(d1_client.baseclient.DataONEBaseClient
method), 197

listSubjects() (d1_client.cnclient.CoordinatingNodeClient
method), 207

listSubjectsResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 206

listViews() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

listViews() (d1_client.mnclient_1_2.MemberNodeClient_1_2
method), 216

listViewsResponse()
(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 214

listViewsResponse()
(d1_client.mnclient_1_2.MemberNodeClient_1_2
method), 216

LOA, 36
load_bin() (in module d1_test.test_files), 234
load_cert() (in module d1_test.test_files), 234
load_json() (in module d1_common.util), 181
load_json() (in module d1_test.test_files), 234
load_jwt() (in module d1_test.test_files), 234
load_utf8_to_str() (in module d1_test.test_files),

234
load_xml_to_pyxb() (in module d1_test.test_files),

234
load_xml_to_str() (in module d1_test.test_files),

234
local_now() (in module d1_common.date_time), 158
local_now_iso() (in module

d1_common.date_time), 158
log_and_count() (d1_common.util.EventCounter

method), 181
log_cert_info() (in module

d1_common.cert.x509), 124
log_jwt_bu64_info() (in module

d1_common.cert.jwt), 114
log_jwt_dict_info() (in module

d1_common.cert.jwt), 114
log_setup() (in module d1_common.util), 179
LoggingContext (class in

d1_common.logging_context), 159

256 Index

DataONE Python Products

LogRecordIterator (class in
d1_client.iter.logrecord), 189

LogRecordIteratorMulti (class in
d1_client.iter.logrecord_multi), 190

M
macfuse, 34
main() (in module d1_test.replication_tester.replication_tester),

229
main() (in module d1_test.utilities.create_from_file),

230
main() (in module d1_test.utilities.generate_test_subject_certs),

232
main() (in module d1_test.utilities.populate_mn), 232
makeCNBaseURL() (in module d1_common.url), 179
makeMNBaseURL() (in module d1_common.url), 179
mapIdentity() (d1_client.cnclient.CoordinatingNodeClient

method), 207
mapIdentityResponse()

(d1_client.cnclient.CoordinatingNodeClient
method), 207

MemberNodeClient (class in d1_client.mnclient),
214

MemberNodeClient_1_1 (class in
d1_client.mnclient_1_1), 215

MemberNodeClient_1_2 (class in
d1_client.mnclient_1_2), 215

MemberNodeClient_2_0 (class in
d1_client.mnclient_2_0), 216

Metacat, 32
method_obj() (in module

d1_common.wrap.access_policy), 144
minixsv, 35
mk_func() (in module

d1_common.wrap.access_policy), 144
MN, 33
mod_ssl, 35
mod_wsgi, 35
MPM, 35
MySQL, 35

N
name (d1_common.types.exceptions.DataONEException

attribute), 132
nested_update() (in module d1_common.util), 180
Node, 33
node_gen (d1_common.cert.subject_info.SubjectInfoNode

attribute), 120
NodeListIterator (class in d1_client.iter.node),

191
normalize() (in module d1_common.multipart), 160
normalize() (in module

d1_common.replication_policy), 162

normalize_datetime_to_utc() (in module
d1_common.date_time), 156

normalize_in_place() (in module
d1_common.system_metadata), 171

normalize_request_response_dump() (in
module d1_client.util), 221

normalizeTarget() (in module d1_common.url),
179

NotAuthorized, 134
NotFound, 134
NotImplemented, 134

O
OAI-ORE Resource Map, 36
ObjectListIterator (class in

d1_client.iter.objectlist), 192
ObjectListIteratorMulti (class in

d1_client.iter.objectlist_multi), 193
OpenSSL, 34, 36
OPTIONS() (d1_client.session.Session method), 218
Oracle, 35

P
pack_echo_header() (in module

d1_test.mock_api.create), 226
parent_gen (d1_common.cert.subject_info.SubjectInfoNode

attribute), 120
parse_media_range() (in module

d1_common.ext.mimeparser), 126
parse_mime_type() (in module

d1_common.ext.mimeparser), 125
parse_response() (in module

d1_common.multipart), 159
parse_str() (in module d1_common.multipart), 159
parse_xml() (d1_common.wrap.simple_xml.SimpleXMLWrapper

method), 146
parseDoc() (d1_common.resource_map.ResourceMap

method), 169
parseUrl() (in module d1_common.url), 178
path_generator() (in module

d1_common.iter.path), 127
pem_in_http_header_to_pem_in_string()

(in module d1_test.utilities.pem_in_http_header),
232

pem_in_string_to_pem_in_http_header()
(in module d1_test.utilities.pem_in_http_header),
232

PID, 33
ping() (d1_client.baseclient.DataONEBaseClient

method), 196
pingResponse() (d1_client.baseclient.DataONEBaseClient

method), 196
POST() (d1_client.session.Session method), 217
PostgreSQL, 35

Index 257

DataONE Python Products

print_logging() (in module d1_common.util), 181
process_input() (in module

d1_test.utilities.urlencode), 233
process_row() (d1_client.solr_client.SolrSearchResponseIterator

method), 220
ProgressLogger (class in

d1_common.utils.progress_logger), 137
Psycopg2, 35
PUT() (d1_client.session.Session method), 217
Python, 35
python-dateutil, 35
python-iso8601, 36
python-setuptools, 36
PyXB, 35
pyxb_binding (d1_client.baseclient.DataONEBaseClient

attribute), 196
pyxb_get_namespace_name() (in module

d1_common.type_conversions), 175
pyxb_get_type_name() (in module

d1_common.type_conversions), 175
pyxb_is_dataone_exception() (in module

d1_common.types.exceptions), 131
pyxb_is_v1() (in module

d1_common.type_conversions), 176
pyxb_is_v2() (in module

d1_common.type_conversions), 176
pyxb_to_dict() (in module d1_common.node), 160
pyxb_to_dict() (in module

d1_common.replication_policy), 163
pyxb_to_etree() (in module

d1_common.type_conversions), 177
pyxb_to_str() (in module

d1_common.type_conversions), 177
pyxb_to_v1_str() (in module

d1_common.type_conversions), 174
pyxb_to_v2_str() (in module

d1_common.type_conversions), 174

Q
quality() (in module d1_common.ext.mimeparser),

126
quality_parsed() (in module

d1_common.ext.mimeparser), 126
query() (d1_client.baseclient_1_1.DataONEBaseClient_1_1

method), 198
query() (d1_client.cnclient.CoordinatingNodeClient

method), 203
queryResponse() (d1_client.baseclient_1_1.DataONEBaseClient_1_1

method), 198
queryResponse() (d1_client.cnclient.CoordinatingNodeClient

method), 203

R
random_3_words() (in module

d1_test.instance_generator.random_data),
224

random_bool() (in module
d1_test.instance_generator.random_data),
224

random_bool_factor() (in module
d1_test.instance_generator.random_data),
224

random_bytes() (in module
d1_test.instance_generator.random_data),
223

random_bytes_file() (in module
d1_test.instance_generator.random_data),
224

random_checksum_algorithm() (in module
d1_test.instance_generator.checksum), 222

random_choice_pop() (in module
d1_test.instance_generator.random_data),
225

random_cn() (in module
d1_test.instance_generator.random_data),
223

random_email() (in module
d1_test.instance_generator.random_data),
224

random_lower_ascii() (in module
d1_test.instance_generator.random_data),
223

random_mn() (in module
d1_test.instance_generator.random_data),
223

random_names() (in module
d1_test.instance_generator.names), 223

random_sized_sample() (in module
d1_test.instance_generator.random_data),
224

random_sized_sample_pop() (in module
d1_test.instance_generator.random_data),
225

random_subj() (in module
d1_test.instance_generator.random_data),
223

random_unicode_char() (in module
d1_test.instance_generator.random_data),
224

random_unicode_char_no_whitespace() (in
module d1_test.instance_generator.random_data),
224

random_unicode_name() (in module
d1_test.instance_generator.random_data),
224

random_unicode_name_list() (in module
d1_test.instance_generator.random_data), 224

random_unicode_name_unique_list() (in

258 Index

DataONE Python Products

module d1_test.instance_generator.random_data),
224

random_unicode_str() (in module
d1_test.instance_generator.random_data),
224

random_within_range() (in module
d1_test.instance_generator.random_data),
225

random_word() (in module
d1_test.instance_generator.random_data),
224

random_word_list() (in module
d1_test.instance_generator.random_data),
224

random_word_unique_list() (in module
d1_test.instance_generator.random_data),
224

random_words() (in module
d1_test.instance_generator.words), 226

rdn_escape() (in module d1_common.cert.x509),
122

reformat_to_pretty_xml() (in module
d1_common.xml), 184

register() (d1_client.cnclient.CoordinatingNodeClient
method), 212

registerAccount()
(d1_client.cnclient.CoordinatingNodeClient
method), 205

registerAccountResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 205

registerResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 212

remove_children()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 149

remove_perm() (d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

remove_perm() (in module
d1_common.wrap.access_policy), 144

remove_subj() (d1_common.wrap.access_policy.AccessPolicyWrapper
method), 144

remove_subj() (in module
d1_common.wrap.access_policy), 144

removeMapIdentity()
(d1_client.cnclient.CoordinatingNodeClient
method), 207

removeMapIdentityResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 207

replace_by_etree()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 149

replace_by_xml() (d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 149

replace_namespace_with_prefix() (in mod-
ule d1_common.type_conversions), 177

replicate() (d1_client.mnclient.MemberNodeClient
method), 215

replicateResponse()
(d1_client.mnclient.MemberNodeClient
method), 215

Replication target, 32
ReplicationTester (class in

d1_test.replication_tester.replication_tester),
229

ReplicationTesterError, 229
requestMapIdentity()

(d1_client.cnclient.CoordinatingNodeClient
method), 208

requestMapIdentityResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 208

reserveIdentifier()
(d1_client.cnclient.CoordinatingNodeClient
method), 200

reserveIdentifierResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 200

resolve() (d1_client.cnclient.CoordinatingNodeClient
method), 202

resolveResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 202

ResourceMap (class in d1_common.resource_map),
165

REST, 36
revision_list_to_obsoleted_by_dict() (in

module d1_common.revision), 170
revision_list_to_obsoletes_dict() (in

module d1_common.revision), 170
round_to_nearest() (in module

d1_common.date_time), 158
run() (d1_test.replication_tester.replication_server.TestHTTPServer

method), 229

S
save_json() (in module d1_common.util), 181
Science Data, 33
Science Metadata, 33
search() (d1_client.cnclient.CoordinatingNodeClient

method), 203
search() (d1_client.solr_client.SolrClient method),

219
searchResponse() (d1_client.cnclient.CoordinatingNodeClient

method), 203
Self signed certificate, 34

Index 259

DataONE Python Products

serialize_cert_to_der() (in module
d1_common.cert.x509), 125

serialize_cert_to_pem() (in module
d1_common.cert.x509), 125

serialize_for_transport() (in module
d1_common.xml), 183

serialize_gen() (in module d1_common.xml), 183
serialize_to_display()

(d1_common.resource_map.ResourceMap
method), 166

serialize_to_display()
(d1_common.types.exceptions.DataONEException
method), 132

serialize_to_headers()
(d1_common.types.exceptions.DataONEException
method), 132

serialize_to_normalized_compact_json()
(in module d1_common.util), 182

serialize_to_normalized_pretty_json()
(in module d1_common.util), 182

serialize_to_transport()
(d1_common.resource_map.ResourceMap
method), 165

serialize_to_transport()
(d1_common.types.exceptions.DataONEException
method), 132

serialize_to_xml_str() (in module
d1_common.xml), 184

Server key, 33
Server Side Authentication, 34
Server side certificate, 34
ServiceFailure, 134
Session (class in d1_client.session), 216
set_attr_text() (d1_common.wrap.simple_xml.SimpleXMLWrapper

method), 148
set_element_dt() (d1_common.wrap.simple_xml.SimpleXMLWrapper

method), 148
set_element_text()

(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 147

set_element_text_by_attr_key()
(d1_common.wrap.simple_xml.SimpleXMLWrapper
method), 147

setAccessPolicy()
(d1_client.cnclient.CoordinatingNodeClient
method), 205

setAccessPolicyResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 204

setDocumentedBy()
(d1_common.resource_map.ResourceMap
method), 167

setDocuments() (d1_common.resource_map.ResourceMap
method), 167

setObsoletedBy() (d1_client.cnclient.CoordinatingNodeClient
method), 201

setObsoletedByResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 201

setReplicationPolicy()
(d1_client.cnclient.CoordinatingNodeClient
method), 210

setReplicationPolicyResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 210

setReplicationStatus()
(d1_client.cnclient.CoordinatingNodeClient
method), 209

setReplicationStatusResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 209

setRightsHolder()
(d1_client.cnclient.CoordinatingNodeClient
method), 204

setRightsHolderResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 204

SID, 33
SimpleXMLWrapper (class in

d1_common.wrap.simple_xml), 145
SimpleXMLWrapperException, 149
size (d1_common.iter.bytes.BytesIterator attribute),

127
size (d1_common.iter.file.FileIterator attribute), 127
size (d1_common.iter.file.FileLikeObjectIterator

attribute), 127
size (d1_common.iter.string.StringIterator attribute),

129
SlenderNodeTestClient (class in

d1_test.slender_node_test_client), 233
SolR, 36
SolrArrayResponseIterator (class in

d1_client.solr_client), 220
SolrArrayTransformer (class in

d1_client.solr_client), 220
SolrClient (class in d1_client.solr_client), 218
SolrRecordTransformerBase (class in

d1_client.solr_client), 219
SolrSearchResponseIterator (class in

d1_client.solr_client), 220
SolrSubsampleResponseIterator (class in

d1_client.solr_client), 220
SolrValuesResponseIterator (class in

d1_client.solr_client), 220
sort() (d1_test.xml_normalize.StableNode method),

235
sort_elements_by_child_values() (in mod-

ule d1_common.xml), 185

260 Index

DataONE Python Products

sort_value_list_pyxb() (in module
d1_common.xml), 185

SQLite3, 35
SSL, 34
SSL handshake, 34
StableNode (class in d1_test.xml_normalize), 235
StableTree (in module d1_test.xml_normalize), 235
start_task() (d1_common.utils.progress_logger.ProgressLogger

method), 138
start_task_type()

(d1_common.utils.progress_logger.ProgressLogger
method), 137

stop() (d1_test.replication_tester.replication_server.TestHTTPServer
method), 229

str_is_error() (in module
d1_common.type_conversions), 176

str_is_identifier() (in module
d1_common.type_conversions), 176

str_is_objectList() (in module
d1_common.type_conversions), 176

str_is_v1() (in module
d1_common.type_conversions), 175

str_is_v2() (in module
d1_common.type_conversions), 175

str_is_well_formed() (in module
d1_common.type_conversions), 176

str_to_etree() (in module
d1_common.type_conversions), 176

str_to_pyxb() (in module
d1_common.type_conversions), 176

str_to_v1_pyxb() (in module
d1_common.type_conversions), 174

str_to_v1_str() (in module
d1_common.type_conversions), 174

str_to_v2_pyxb() (in module
d1_common.type_conversions), 175

str_to_v2_str() (in module
d1_common.type_conversions), 174

StringIterator (class in d1_common.iter.string),
129

strip_log() (in module
d1_common.type_conversions), 178

strip_logEntry() (in module
d1_common.type_conversions), 178

strip_node() (in module
d1_common.type_conversions), 178

strip_node_list() (in module
d1_common.type_conversions), 178

strip_system_metadata() (in module
d1_common.type_conversions), 178

strip_timezone() (in module
d1_common.date_time), 157

strip_v2_elements() (in module
d1_common.type_conversions), 178

stripElementSlashes() (in module
d1_common.url), 179

subj_has_perm() (d1_common.wrap.access_policy.AccessPolicyWrapper
method), 143

subj_has_perm() (in module
d1_common.wrap.access_policy), 144

SUBJECT_NODE_TAG (d1_common.cert.subject_info.SubjectInfoNode
attribute), 119

SubjectInfoNode (class in
d1_common.cert.subject_info), 119

SubjectInfoTree (in module
d1_common.cert.subject_info), 121

Subversion, 35
SynchronizationFailed, 135
synchronizationFailed()

(d1_client.mnclient.MemberNodeClient
method), 215

synchronizationFailedResponse()
(d1_client.mnclient.MemberNodeClient
method), 215

synchronize() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 213

synchronizeResponse()
(d1_client.cnclient_2_0.CoordinatingNodeClient_2_0
method), 213

sysmeta_add_blocked() (in module
d1_common.replication_policy), 161

sysmeta_add_preferred() (in module
d1_common.replication_policy), 161

sysmeta_set_default_rp() (in module
d1_common.replication_policy), 161

System Metadata, 33
systemMetadataChanged()

(d1_client.mnclient.MemberNodeClient
method), 215

systemMetadataChangedResponse()
(d1_client.mnclient.MemberNodeClient
method), 215

SystemMetadataIteratorMulti (class in
d1_client.iter.sysmeta_multi), 193

T
test_dst_mn() (d1_test.replication_tester.replication_tester.ReplicationTester

method), 230
test_src_mn() (d1_test.replication_tester.replication_tester.ReplicationTester

method), 230
TestHTTPServer (class in

d1_test.replication_tester.replication_server),
229

TLS, 34
to_iso8601_utc() (in module

d1_common.date_time), 158
ToJsonCompatibleTypes (class in

d1_common.util), 182

Index 261

DataONE Python Products

topological_sort() (in module
d1_common.revision), 169

transform() (d1_client.solr_client.SolrArrayTransformer
method), 220

transform() (d1_client.solr_client.SolrRecordTransformerBase
method), 220

trigger_by_header() (in module
d1_test.mock_api.d1_exception), 227

trigger_by_pid() (in module
d1_test.mock_api.d1_exception), 227

trigger_by_status_code() (in module
d1_test.mock_api.d1_exception), 227

ts_from_dt() (in module d1_common.date_time),
154

ts_to_dt() (in module d1_common.cert.jwt), 115
ts_to_str() (in module d1_common.cert.jwt), 114
TYPE_NODE_TAG (d1_common.cert.subject_info.SubjectInfoNode

attribute), 119
tzname() (d1_common.date_time.FixedOffset method),

153
tzname() (d1_common.date_time.UTC method), 153

U
unpack_echo_header() (in module

d1_test.mock_api.create), 226
UnsupportedMetadataType, 134
UnsupportedType, 134
update() (d1_client.mnclient.MemberNodeClient

method), 215
update() (d1_common.wrap.access_policy.AccessPolicyWrapper

method), 141
update() (d1_test.slender_node_test_client.SlenderNodeTestClient

method), 233
update() (in module

d1_common.wrap.access_policy), 144
update_elements() (in module

d1_common.system_metadata), 172
updateAccount() (d1_client.cnclient.CoordinatingNodeClient

method), 205
updateAccountResponse()

(d1_client.cnclient.CoordinatingNodeClient
method), 205

updateGroup() (d1_client.cnclient.CoordinatingNodeClient
method), 209

updateGroupResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 209

updateNodeCapabilities()
(d1_client.cnclient.CoordinatingNodeClient
method), 212

updateNodeCapabilitiesResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 211

updateReplicationMetadata()
(d1_client.cnclient.CoordinatingNodeClient
method), 210

updateReplicationMetadataResponse()
(d1_client.cnclient.CoordinatingNodeClient
method), 210

updateResponse() (d1_client.mnclient.MemberNodeClient
method), 215

updateSystemMetadata()
(d1_client.baseclient_2_0.DataONEBaseClient_2_0
method), 199

updateSystemMetadataResponse()
(d1_client.baseclient_2_0.DataONEBaseClient_2_0
method), 199

urlencode() (in module d1_common.url), 179
UTC (class in d1_common.date_time), 153
utc_now() (in module d1_common.date_time), 157
utcoffset() (d1_common.date_time.FixedOffset

method), 153
utcoffset() (d1_common.date_time.UTC method),

153

V
v2_0_tag() (in module

d1_common.type_conversions), 178
validate_and_decode() (in module

d1_common.cert.jwt), 114
validate_bagit_file() (in module

d1_common.bagit), 149
Vendor specific extensions, 32
verifyAccount() (d1_client.cnclient.CoordinatingNodeClient

method), 206
verifyAccountResponse()

(d1_client.cnclient.CoordinatingNodeClient
method), 206

VersionMismatch, 135
view() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0

method), 214
view() (d1_client.mnclient_1_2.MemberNodeClient_1_2

method), 216
viewResponse() (d1_client.cnclient_2_0.CoordinatingNodeClient_2_0

method), 213
viewResponse() (d1_client.mnclient_1_2.MemberNodeClient_1_2

method), 215

W
Workspace, 33
wrap() (in module d1_common.wrap.access_policy),

141
wrap() (in module d1_common.wrap.simple_xml), 145
wrap_sysmeta_pyxb() (in module

d1_common.wrap.access_policy), 141
WSGI, 35

262 Index

DataONE Python Products

X
X.509, 33
xml_is_dataone_exception() (in module

d1_common.types.exceptions), 131
xml_to_stabletree() (in module

d1_test.xml_normalize), 235
xsd_datetime_str_from_dt() (in module

d1_common.date_time), 155

Index 263

	Utilities (for end users)
	DataONE ONEDrive
	DataONE Command Line Interface

	Member Node (for Member Node partners)
	Generic Member Node (GMN)

	Python Libraries (for software developers)
	DataONE Common Library for Python
	DataONE Client Library for Python
	DataONE Test Utilities

	Contents
	DataONE ONEDrive
	DataONE Command Line Interface (CLI)
	Generic Member Node (GMN)
	Indices and tables
	DataONE Common Library for Python
	Indices and tables
	DataONE Client Library for Python
	Indices and tables
	DataONE Test Utilities

	Python Module Index

